Environment for creative processing of text and numerical data

SURVO MM

Roots of second degree equation

Beginning status (before activation):
   1 *
   2 *The roots of the equation A*Z^2+B*Z+C=0 are computed as follows:
   3 *
   4 *Let the roots be Z1=X1+i*Y1 and Z2=X2+i*Y2.
   5 *The sign of the discriminator D=B^2-4*A*C specifies, whether the
   6 *roots are complex or not.
   7 *
   8 *Hence X1=if(D>=0)then((-B+sqrt(D))/(2*A))else(-B/(2*A))
   9 *      X2=if(D>=0)then((-B-sqrt(D))/(2*A))else(-B/(2*A))
  10 *      Y1=if(D>=0)then(0)else(sqrt(-D)/(2*A))
  11 *      Y2=if(D>=0)then(0)else(-sqrt(-D)/(2*A))
  12 *
  13 *If A=1, B=5, and C=14, we obtain
  14 *      X1.=                       Y1.=
  15 *      X2.=                       Y2.=
  16 *       D.=  
  17 *

Ending status (after activation):
   1 *
   2 *The roots of the equation A*Z^2+B*Z+C=0 are computed as follows:
   3 *
   4 *Let the roots be Z1=X1+i*Y1 and Z2=X2+i*Y2.
   5 *The sign of the discriminator D=B^2-4*A*C specifies, whether the
   6 *roots are complex or not.
   7 *
   8 *Hence X1=if(D>=0)then((-B+sqrt(D))/(2*A))else(-B/(2*A))
   9 *      X2=if(D>=0)then((-B-sqrt(D))/(2*A))else(-B/(2*A))
  10 *      Y1=if(D>=0)then(0)else(sqrt(-D)/(2*A))
  11 *      Y2=if(D>=0)then(0)else(-sqrt(-D)/(2*A))
  12 *
  13 *If A=1, B=5, and C=14, we obtain
  14 *      X1.=-2.5                   Y1.=2.783882181415
  15 *      X2.=-2.5                   Y2.=-2.783882181415
  16 *       D.=-31
  17 *

This is an example of simultaneous activation (all results in one).

Home  |  News  |  Publications  |  Download  |  Flash
Copyright © Survo Systems 2001-2008. All rights reserved.
Updated 2008-10-20 by webmaster'at'survo.fi.
Best viewed with any browser.