1 * 2 *The roots of the equation A*Z^2+B*Z+C=0 are computed as follows: 3 * 4 *Let the roots be Z1=X1+i*Y1 and Z2=X2+i*Y2. 5 *The sign of the discriminator D=B^2-4*A*C specifies, whether the 6 *roots are complex or not. 7 * 8 *Hence X1=if(D>=0)then((-B+sqrt(D))/(2*A))else(-B/(2*A)) 9 * X2=if(D>=0)then((-B-sqrt(D))/(2*A))else(-B/(2*A)) 10 * Y1=if(D>=0)then(0)else(sqrt(-D)/(2*A)) 11 * Y2=if(D>=0)then(0)else(-sqrt(-D)/(2*A)) 12 * 13 *If A=1, B=5, and C=14, we obtain 14 * X1.= Y1.= 15 * X2.= Y2.= 16 * D.= 17 *
1 * 2 *The roots of the equation A*Z^2+B*Z+C=0 are computed as follows: 3 * 4 *Let the roots be Z1=X1+i*Y1 and Z2=X2+i*Y2. 5 *The sign of the discriminator D=B^2-4*A*C specifies, whether the 6 *roots are complex or not. 7 * 8 *Hence X1=if(D>=0)then((-B+sqrt(D))/(2*A))else(-B/(2*A)) 9 * X2=if(D>=0)then((-B-sqrt(D))/(2*A))else(-B/(2*A)) 10 * Y1=if(D>=0)then(0)else(sqrt(-D)/(2*A)) 11 * Y2=if(D>=0)then(0)else(-sqrt(-D)/(2*A)) 12 * 13 *If A=1, B=5, and C=14, we obtain 14 * X1.=-2.5 Y1.=2.783882181415 15 * X2.=-2.5 Y2.=-2.783882181415 16 * D.=-31 17 *
This is an example of simultaneous activation (all results in one).