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1. INTRODUCTION

Our objective is to study the propertics of traffic networks with
regard to distance distributions. More precisely, we wish to determine
the probability distribution of the distance between two random points
in a network.

The basis of our investigations is a certain probability model which
has been used previously by TOrNgvIST in his paper »On Distribution
Functions for Quantities Related to Networks» [4]. In the present study
we shall more thoroughly describe and justify certain ideas presented by
him. We shall also try to develop these ideas both in theory and in prac-
tice.

Our method of study differs to some extent from the usual presen-
tation in the theory of graphs, since we shall consider only metric net-
works. Hence we shall be investigating the network as a connected, non-
denumerable point set and not only as a system of distinet and inter-
connceted points. For this reason our terminology differs slightly from
that used in the theory of graphs.

The study is divided into five chapters. In the introduction we define
the network and some fundamental concepts related to it. Some results
from the elementary theory of graphs are also mentioned.

Chapters 2 and 3 are devoted to the metric properties of networks.
In Chapter 2 we consider especially questions related to reflection points
and reflection sets. Chapter 3 for the most part deals with an important
class of networks which we call Térnqvist networks.

In Chapter 4 we concentrate on our main problem, the derivation of
the distance distribution under certain conditions. We arrive at an ex-
plicit solution for the Térngvist networks.

In Chapter 5 the problem is extended in a more realistic direction
and a solution for general networks is given. At the end of Chapter 5
some potential applications are discussed.
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1.1. Definition of the network

Let us take an idealized picture, e.g., of a road network, a system of
traffic connections, and call it shortly a nefwork.

DeriNiTION. A network is a connected metric space consisting of
a finite number of simple arcs of finite length, having only end points
in common.

In terms of the theory of graphs this is to say that the network is an
unoriented, connected graph, to whose edges positive numbers (lengths)
are attributed. Such a graph can always be imbedded in a three-
dimensional space, and often in a plane.

According to the definition, the network A4 and each subset B C 4
consisting of arcs has a finite length, which means the sum of the lengths
of the arcs concerned. We denote the length of B by L(B) and let
especially the length of 4 be L(4)= a.

An immediate consequence of the definition is that two points,
aand f, which belong to 4 can be connected with an are which belongs
to A, has a finite length, and does not intersect itself. We call such an
arc a path between the points «, f. The points «, f are called the end
points of the path and they are considered as belonging to the path.
Thus a path is a closed set. We will sometimes also say that the path
starts from ~ and ends in 8 or vice versa.

1.2. Basic coneepts

Let x be a point in A. The number of distinet paths starting from
a is called the degree of « and denoted by n,.

In the planar network in Fig. 1.1 the degree =, of ' is equal to
6 and the degree n, of a" is equal to 2.

According to the definition of a network, =, is always finite and
= 1. We also notice that the network 4 possesses only a finite number
of points « having =, # 2. We call these points special points. 1f
n, = 1, « is an end point of the network;if n, >3, «x is a junction
point. On the contrary, the points of degree 2 constitute a continuum.
These points are called line points. In Fig. 1.1, for instance, the points
e, & and g are junction points, y; and 9, are end points, and &"
is a line point.
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Fig. 1.1

An edge is a path between two special points having no special points
as inner points. In Fig. 1.1, the path & "¢, is an edge. Between o
and &, there are two edges.

A path whose end points coincide is called a cycle. A network con-
taining no cycles is a free. A subset of A4 to which the definition of the
network applies is called a subnetwork of A.

1.3. Cyclomatic number

According to the definition of a network, there are only a finite
number of special points and edges in a network. Let the numbers of
special points and edges be m, and m,, respectively, and let the special
points be

Ey98py e by
The cyclomatic number m of a network is defined as
(1.1) m=my —my+ 1.

Since every edge contributes two units to the total degree of the special
points, we have

and (1.1) is therefore equivalent to the expression
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(1.2) m=1+%) (n

The cyclomatic number wm has interesting interpretations which
are derived in the basic theory of graphs. We refer to BErGE [1] and
REIDEMEISTER [3].

If A is a planar network, it follows directly from the famous formula
of Euler that m equals the number of the finite regions (faces) into
which the plane is divided by 4. In the general case we have the follow-
ing interpretation: m indicates in how many points A4 can be cut off
without becoming disconnected.

It can be proved that m is always non-negative and vanishes only
when A4 is a tree.

2. METRIC PROPERTIES OF NETWORKS
2.1. Distance in a network

According to the definition of a network, there are only a finite
number of paths connecting two points of a network A. Hence there
exists a shortest path between any two points, and there are a finite
number of such shortest paths.

The shortest paths between two points «, § form a certain subnet-
work of A which is denoted by (x, ). The distance between the points
«, f is defined as the common length s,, of these shortest paths. If »
is one of the shortest paths between « and f, we usually say briefly
that » is an (x, f)-path.

The distance s,, is non-negative; it is 0 if and only if « and p
coincide. Obviously s,, = s4,. For three arbitrary points «, B, y, the
triangle inequality s,, < s,, + s, holds with equality if and only if
y € («, B).

The relative degree of f with respect to « is the degree of f in the
network (x, f); it is denoted by ng4,. In the case = a where (x,p)
reduces to the single point f, we define n,, = 1. Usually the shortest
path between o and f is unique and the network (x,f) consists of
only one (x,f)-path. Then =, = n, = 1. There are, however, cases
where (x,#) is more complex. In Fig. 2.1, for instance, n,, = 2 and
Ny, = 8.
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The following lemma will be repeatedly needed.

Lemma 2.1. y € (x, ) implies («,y) N (y,f) = 7.
Proor. Suppose that 6 € (x,9)N (y, ). Then using the triangle
inequality we have

Sug = 8y, T 8p = 835 + 85, + 8,5 + 8y
= 8,5 + 8s + 23(,’, = 8y + ‘Zs(.,,, .

which implies 6 = y.

2.2. Reflection points

Let « be an arbitrary point in 4. The number of points £, for
which L is finite, since no edge in A4 can contain more than
one line point f satisfying n, > 1. As a matter of fact, if an edge
would contain two line points g,y for which =, >1, n, > 1, then
we would have at the same time g € (x,y), and hence s, = s,;+ s,
and y € («, f), and hence s,; = s,, + 5,5 But this would imply s, = 0
and thus f = y.

The points § for which ng, > 1 are called the reflection points of
a in A. The reflection points will play a very important part in the
following, due to the fact that they are points in which the distance s,,
attains local maximum values. This fact will later be brought to the
fore in Theorem 3.1.

In the following we shall present some basic theorems concerning
reflection points.
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2.3. Path triangles
The shortest paths v, v,,v, between the points «, f,y form a
path triangle  A(vyg vy, v,), if v,Uv, Uv, is a eyele. The points
x, f,y are called the wertices and the paths v, v,, v, are called the

sides of A(v,,, vy, v,,). We can now prove a theorem stating that every
vertex has a reflection point on the opposite side of the path triangle.

TureoreEM 2.2, The vertex « of A(v,, v,,v,,) has, on the opposite
side v, at least one reflection point «' fulfilling y € («, a').

Fig. 2.2

Proor. We consider the paths between & and an arbitrary point
d €w, and denote

83y = N (855 + 85y 8y, + 8,4) -

Thus s, < &,,. The following proof is divided into two parts depending
on whether s, = §,, forall 6 €2, or not.

1° Let us first suppose that s, = 5, for all 6 €w,: in other
words, at least one of the (48, «)-paths goes either through f or y.
Consider the point 6 € v, for which

(2.1) S = ) (e 8, — Smﬂ) .

On distance distributions in networks 13

Such a point o € v, exists, since
0<3 (8 + 8ya — Sup) = 8,

by the triangle inequality. Since s, = s;, + s;,, (2.1) can be written
in the form

83p - 8gy = S4, —+ 8,
from which it follows that
850 = 83 = MiN (835 + 85, , 85, + 8,4)
= Sy - 8y = Sy, - 8-

Hence ¢ is a reflection point of « and y € (x, 9) so that 4 can be
chosen for the point «'.

2° We now suppose that there exists a point 0 € vy for which
844 < 835~ Thus the (4, x)-paths do not pass through f nor through y.
Since wv,;Uwv, Uw, is a cycle and therefore «€v,, we conclude
that there exists a junction point &' € v, belonging to (0, ) and such
that the (¢, «)-paths have no common points with v, except &
If v, has several junction points fulfilling this condition, we take for
¢ the point which is nearest to y.

Let v be one of the (¢, «x)-paths and let ¢ be the nearest to &
junction point in which » meets v . If such a point ¢" does not exist
(i.e., v meets v,,), we take ¢ = a. Then we have a new path triangle
with vertices ¢”, &',y and it can be shown, as in the first part of the
proof, that &" has a reflection point o' € (&', y) Nwvy fulfilling
y € (¢",a’). But since &" € (x,¢&'),&" €(x,y), and, according to the
definition of &', either & € (x,a’) or v €(a,a’), we must have
e" € (x,x'). Since ' is a reflection point of ¢ fulfilling y € (¢" a')
and &” € (x,«’), it follows that «’ is also a reflection point of « and
y € (a,«’). Hence o satisfies the requirements of the theorem.

2.4. Classification of reflection points

We denote by T'(x) the finite set of all reflection points of the point
a. This set will be divided into two subsets. We say that f is an essential
reflection point of «, if f€7T(x) and if the network (x,f) contains
a cycle to which both a« and f belong. Let T (x) be the set of the
essential reflection points of a. It is immediately seen that g € T'(x)
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implies « € T'(#). The reflection points of x which are not essential
reflection points are called wunessential. They constitute a set 7T'y(x).
Thus T'(x) is the union of the disjoint sets T(x) and 7'(x).

Intuitively, if f# € T'(x), a short displacement of « along a certain
path will always cause a similar displacement of f; see Fig. 2.3 a. On
the other hand, if p € 7Ty(x), the point f remains fixed although «
is displaced; see Fig. 2.3 b. The objective of the two following theorems
is to express these properties of reflection points in a more accurate
form. Let us first consider the unessential reflection points.

Fig. 2.3a Fig. 23 b

Tueorem 2.3. If f is an unessential reflection point of x, then
there exists at least one junection point in (a, ) for which g is an
essential reflection point.

Proo¥. Since j € T'(x) and therefore n, =1, there exist at least
two (x, f)-paths, starting from p in different directions. Let », and
vy be such paths and let y be their common point nearest to . Such
a point y exists, since v, and v, meet at least in x. The point »
cannot, however, coincide with «, for in this case », U v, would be a
eycle and f € T')(x), contrary to our assumption.

Since n. , > 2, and since y is, by Lemma 2.1, the only common
point of (x,y) and (y,f), we have n, > 3. Hence y is a junction
point and belongs to (x, #). Furthermore, f € T'(y), since the parts
of » and », bounded by f and y form a cyecle.

On distance distributions in networks 15

In order to establish a corresponding theorem for essential reflection
points, we must first define the concept of a basic cycle.

DeriNtTION. A cyele D is a basic cycle, if between any two points
a, f of D there is a shortest path which belongs to D.

Remagrk. It would be possible to restrict the condition of the defini-
tion to the junction points of the cycle. Actually, if a eycle C' contains
two points «, f such that no (x, p)-path belongs entirely to C, then
C' has also two junetion points the shortest paths between which have
no points in common with €' except their end points. This fact can be
established by inspecting the end points of the common parts of some
(x, f)-path and C.

An immediate consequence of the definition of a basic cycle is that
every point on a basic cycle D has exactly one essential reflection point
on the same basic cycle D at a distance of } L(D). In addition, if «
and g are two arbitrary points of D, the distance between their re-
flection points on D is the same as the distance s,, between x and f.

The following theorem is a generalization of these statements.

THEOREM 2.4. Let S be an essential reflection point of ~ and let
C be a cycle belonging to the network (x, ) and containing x and f.
(The existence of such a cycle follows from the definition of an essential
reflection point.)

If C is not a basic cycle, then it contains two paths v, (with end
points «',a” and containing «), v; (with end points £’, 8" and con-
taining p) possessing the following properties:

1°  L(v,) = 8yrpr » Llvy) = 8ppe -

2° L(v,) = L(vp) .

3° If X €w, there exists a f€v, such that B €T,(x) and
8af = Sap = 3 L(C).

4° The end points of », and v, are essential reflection points of
some junction points on C.

Proor. The points x and f§ divide € into two paths 2" and "
both of which are (x, f)-paths. Since, by assumption, C is not a basie
cycle, it contains at least one pair of junction points &', " the shortest
paths between which have no points in common with € except their
end points. This is clear from the remark made in connection with the
definition of a basic cycle. Let u be one of the (¢, &”)-paths.
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Both of the points &', &” cannot be on o', since »' is an (a, §)-
path. For the same reason both of them cannot be on »”. Then let us
suppose that ¢ €' and ¢" €¢". Let %' be the part of »° bounded
by « and & and let «" be the part of »" bounded by « and &".
Since uwUw' Uw’ is a cycle formed by the shortest paths between the
points x, &', ¢", it can be seen that A(w, ', w") is a path triangle. By
applying Theorem 2.2, we find that £” has on ' a reflection point a
fulfilling ¢" € (¢",«"). If there are several such reflection points, we
choose the one nearest to « for «'.

We now consider all pairs of points &', ¢” for which the previous
considerations are valid and pick the pair of points &', ¢” that gives the
x" nearest to «. We are going to show that &' is then an essential
reflection point of ¢”. Denote by u, the part of »" bounded by a and
a’. Let & be an inner point of u, (i.e. & # x,'). We will now prove
that «' € (¢", ®).

On distance distributions in networks 1%

Indeed, suppose that o' € (¢", %) and hence also & € (¢, %), as a
consequence of & € (&”,«’). The paths u”,2' N («,&), and w U (2" N (¢, &))
would then form a path triangle with vertices &, % «. Hence, by
Theorem 2.2, & would have on ', between the points 7, a, a reflec-
tion point y for which x € (¢, ) and hence also &" € (¢, p), since
&' € (¢", ®%). This, however, contradicts our assumption that »' N (x, X)
does not contain any reflection point » of & satisfying &' € (¢, ).
Thus it has been proved that «' € (&, &).

We shall now prove that « € (¢", %). The proof is indirect. Suppose
that « € (¢",%). Let v be an (¢, X)-path. Since, by assumption,
« € (¢", %) and, by the previous argument, «" € (¢”, &), there would have
to exist on o', between &' and &, a junction point & in which »
takes off from »'. Since ¢" €", there must be another junction point
&§" €v" in which v joins o".

Let 4 be the part of » bounded by the points & and £”. We may
agssume that % has no points in common with C' except & and &".
Since now A(@, v’ N (&', «), " N (§",«)) is a path triangle with vertices
x, &', &", the vertex £” would then have, by Theorem 2.2, on »' between
& and « areflection point y for which &" € (¢”, y). But this contradicts
our assumption that ' is, of all points of this type, the one nearest
to «.

Hence it has been proved that « € (¢”, %) for every inner point
of wu,; but then also x € (¢”,a’), because «’ is an end point of u,.

Since ¢ €(¢",«") and « € (¢",«'), the cycle » U« Uwu" belongs
to the network (&”, ') and it has been shown that «' € 7',(&").

Next we consider an arbitrary inner point & of u, and denote by
B that point on #" for which s,7 = s,;. We wish to prove that
C c (& p).

Again, the proof is indirect. Assume that C Cl:'. (%, B). This is to say
that « € (%, f). Let v be one of the (&, B)-paths. Since « € (&, §),
there must be junction points £ € v’ and &" €¢" in which » takes off
from the eycle ¢ and such that » has no points in common with C
between & and &".

If & € (&',x), we have a path triangle with vertices &, x,&" and if
&' € (%, «), we have a path triangle with vertices &, «, &". In both cases
it is seen immediately, by Theorem 2.2, that £” has on v’ between &
and « a reflection point y for which &’ € (¢”,y). This contradicts the
assumptions about ¢ and ¢’. Hence C c (%, f). This is also to say
that s;3 = 4 L(C) and j € 7,(%). If we let X approach &', then § will
2
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approach a point §” for which, by continuity, the relations 8" € T{a’),
Spar = Syqn U C (o', §7) will still hold. The point g is an essential
reflection point of &'. In fact, since o € 7,(c") and € c{«/, §%), we
have

[

LC) = 8y 8ppr 1 Sprye

= Sy T b+ Sy
or
Syt Sy = g Supe

which implies that there exists a evele belonging to (¢, ") and con-
taining ¢ and 8" . Thus g" € T(").

A similar argument can be carried out for »" as has now been per-
formed for +'. As & result we {ind points " €+", 8 €', and a path
u. C v", with propertics similar to those of x’, 87, and wu,, respectively.
If we denote », = u, Uwu} and definc v, in a similar manner. the
assertions 1°—4° of Theorem 2.4 can be easily verified:

1° follows for #», from CC (x". 8").

2° is true, since it has been shown that s, = s,., and similarly,

Sanr = Spg

3° has been proved above for x € u,.

4° has been proved above for o', 5.

Revarg 1. The paths v,, v; may occasionally reduce to the points
x, B.

Remark 2. If € is a basic cycle, we may take v, = v, == C; asser-
tions 2° and 3° are then valid also in this case.

2.5. Reflection sets

We shall generalize the reflection point concept extending it so as
to apply to the subnetworks of 4. Let B be an arbitrary subnetwork.
The reflection set T(B) of B is defined as

TB) = U T(x).

*x€R

The cessential and unessential reflectlon sets are defined in a similar
manner by
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TyB) — U Ty{x).

x€ER
TyB) -= U Tax)
xER
and hence

T(B) = TWB) U Ty(B).

If B consists of a single point, the sets T(8) and T,(B) have no
points in common. If B is a non-degenerate subnetwork, this need not
be so. Those cases in which

(2.2) TyB) N Ta(B) = O,

offer a particular intercst. We say that B is completely reflective, if it
satisfies (2.2).

The nature of a completely reflective subnetwork is illustrated in
Fig. 2.5; the subnetwork (path) » is completely reflective whereas »
is not. The fact that " is not completely reflective is due to the degenera-
ting of one of the components of T.(2"). Certain reflection points of the
points between «; and «, coincide in the single point » which is an
unessential reflection point of all of them. Since, however, y € T{(x,),
we have T ('} N Tyv') =y £ @.

Y V'

&y

]
Fig, 2.5

In this example the unessential reflection set was empty or consisted
of a single point. As a matter of fact, 7T,(8B) is always a finite set since,
according to Theorem 2.3, T,(B) consists of reflection points of junction
points.

We shall now study under what conditions a path in 4 is completely
reflective. .. :
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TurorEM 2.5. A path » € A that does not (even as end points)
contain junction points, or reflection points of junction points, is com-
pletely reflective. T,(v) then consists of a finite number of paths all
having the same length L(») but no common points.

Proor. By assumption, v is part of an edge. To prove the first part
of the theorem, let us first suppose that no point of » has any essential
reflection points. Since T'\(v) = @ and therefore also 7T'y(v) N Ty(v) = G,
it is seen that v is completely reflective. We then suppose that a point
a €v has an essential reflection point f. Using Theorem 2.4 it can
be verified that § cannot be an unessential reflection point of any point
of ». This proves that » is completely reflective. In fact, we observe
that since » does not contain junction points and reflection points of
junction points, v is, by Theorem 2.4, 4°, a part of the path v, defined
in that theorem.

Since f € Ty(x), S cannot be a reflection point of a point X €w
different from «. This follows from Theorem 2.4, 3° according to which
& has an essential reflection point g such that f € (%, f). In order for
f to be a reflection point of ¥, would have to be a junction point,
gince it is, by Lemma 2.1, the only common point of (&, ) and (8, f).
This is impossible, since a junction point f would have a reflection point
« €v. Thus the first part of the theorem is proved.

The second part follows directly from the previous considerations by
which it can be seen that T,(v) consists of a finite number of paths,
whose end points are the essential reflection points of the end points of
» and each one of which has the length L(v). These paths, the components
of 7'(v), have no common points, since if two of them had a common
point, it would mean that such a common point would have at least two
different reflection points on », which is impossible (cf. 2.2).

A direet consequence of Theorem 2.5 is

CoroLLARY 2.5.1. For a path » € 4 which does not contain junction
points, or reflection points of junction points as inner points, T'(v)
consists of a finite number of distinct points and paths all having the
same length L(v) but no common inner points.

The general solution of our main problem, viz., the determination
of the distance distribution, is based on this corollary. A path » to
which Cerollary 2.5.1 applies may be called completely reflective in a
wide sense.
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2.6. Nonsingular networks

A network A is nonsingular, if the relative degree n,, (cf. 2.1)is
at most 2 for all points «, 8 in A. Networks appearing in practice
are usually nonsingular, since the condition ng > 3 requires that
there be at least three paths of equal length between x and §.

Probably the most important class of nonsingular networks consists
of those in which the shortest path between any two junction points is
unique.

2.7. The function n.(s)

Let « be an arbitrary fixed point in 4. We introduce the non-
negative, integer-valued function defined by

n,(s) = number of points # € A for which s,, = s.

This function is always bounded, since no edge can contain more than
two points at a given distance s from ~. We now try to find an explicit
expression for n_(s).

The jump (if any) of n,(s) at a certain distance s is built up of the
seomponent jumpss contributed by all points g for which s, = s.
The jump contributed by such a point is

(g — Ng) — Mgy = Mg — 2y, .

ng — 2ngy =56—4=1
Fig. 2.6

This expression can be different from zero only if 5 belongs either to
T'(x), the set of the reflection points of «, or to B = {e, ¢, ...,5,},
the set of the special points of 4. Thus n,(s) has only a finite number
of discontinuities and these can occur only at the points
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8§ =10

EH

s=s8,, PETMUE.

Between two points of discontinuity n,(s) is constant. Thus n,(s) is a
non-negative, integer-valued step function.

The definition of n,(s) is ambiguous for the values (2.3). We amend
the definition by taking the limit on the right as the value of =, (s) at
the points (2.3).

In order to establish a formula for . {s), we introduce the auxliary
function

(2.3)

l] , if x>0
ple) =

10 , if x<z 0.
Observing that 7,(0) = n, and n,, = 1, by the definition in 2.1, we
then obtain
. : -
(2.4) m(5) = 2p(s) + D (my — Zng) @ls — s,,)

8

where the sum is taken over all § € T{x) U E . 1n fact, in all other points
the terms of the sum vanish.

We may modify (2.4) a little using the identity
g — 25, = (g — 2) — 2ng, — 1)

and splitting up (2.4) correspondingly into
nofs) = 29ls) + 2, (ng — D gpls — 55) — 2 D (ngy — Dgls — 5,,)
# &

where f# € T(a) UE  as before. However, since n, —2 =0, if f§¢E,
and g — 1 =0, if § € T{x), we have

(2.5) my(s) = 2qifs) - ;Zl (= 25 — 50, ) — 2 D (mgy— Dpls — ).

fE€T(n)

2,8, The number of reflection points

We apply (2.5) to evaluate the number of reflection points of a.
According to the definitions of a network and of n_{s), the lunction
n. (%) vanishes, when ¢ becomes large enough. More precisely, we know
that n (s) =0, if & >4, == maxs,, where FET(x)UE. Tf 5>,

i
we have (s — &) == 1 forall 5. and thus
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—2)—2 D (mgy — 1)
E—1 A€ Tiw)

Hence, by (1.2),

my

al .
1>, —2) —m.
k=1

=
]

\
et
I
-

+
12

(2.6}
This proves

Tueorem 2.7, In a nonsingular network the number of reflection
points of any point equals the cyclomatic number m of the network.

This theorem can be formally extended so as to apply to all networks
by interpreting 7, — 1 as the order of the refleetion point #: one may
imagine that n, — 1 distinct. and simple, reflection points have merged
into one.

3. EXTREME POINTS
3.1. Definition

Conceptually closely related to the reflection points are the exireme
points which are defined as follows:

Let B, and B, be subnetworks of 4. We say that a point 3,
belonging to 8, iz an extreme point of B, on B, if for some point 5,
belonging to 5,

Sp0 = SUP Sy -
% E B
o € R,
Conversely, p; is then also an extreme point of B, on B,.

The set of the extreme points of B, on B, is denoted by A(B;, By)
and the extreme distance s,, by s{B;, B,). For instance, in the net-
work shown in Fig. 3.1 and consisting of the basic cyecles D, and D,
we have A(Dy, Dy} = (8 f2), A(Dy, D)) = (B, B1) and s(Dy. Dy)
== 8ga0 == 84

The following theorem illustrates the nature of the extreme points
and shows their relationship to the reflection points.
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TarorEM 3.1. Let x be an arbitrary point in A and let B be a
subnetwork of 4. Then A(x, B) consists of distinet points in B each
of which is either an end point of B or a reflection point of a.

ReMarg. If B has no end points, then A(x, B) € T(x).

Proor. Let f be an extreme point of « on B. We make the assump-
tion that f is neither an end point of B nor a reflection point of «.
and show that this leads to a contradiction to the assumption that f
is an extreme point.

According to the antithesis, we have n, > 2 in B and n, = 1.
This is to say that there is at least one edge or part of an edge of 4 in
B, say v, starting from f but not belonging to any (x, f)-path. We
denote by » the other end point of ». Since v dt (x, ), we have

(3.1) 8ap < 84, + L(v).

From any inner point 6 of v, the shortest path to x must pass through
¥, since otherwise s,5 > s,; against the extreme point property of f.
Thus s,, >s,, + 8,5, which contradicts (3.1) when 6 is close enough
to f.

3.2. Extreme points on basic eycles

We shall now study the extreme points on basic cycles more closely.
In 2.4 we defined a basic cycle as a eycle D which satisfies the following
condition: to any two points «, f of D there is an (x, 8)-path which
belongs to D.

|

e~
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We first consider the case that B, is a point x whereas B, is a
basic eycle D). According to Theorem 3.1, A(x, D) always consists
of reflection points of a on D; in fact we shall prove more:

TaeoreM 3.2. If p is a reflection point of «, then there exists a
basic cycle D containing f#, and we have A(x, D)= f (i.e. p is the
only extreme point of a on D).

Fig. 3.2

Proor. We first assume that p € T,(x). By the definition of an
essential reflection point, there exists a cycle C belonging to (x, f)
and containing x and B. The points «,f divide C into two («x, ff)-
paths ¢, v". Let ¢ €v and &” € %" be junction points and denote

Sper = 8yp -} Sgoe s
8o = Sy -+ Soe” -

We shall distinguish two cases.
1° For all & €', " €v", the equation

8yrpr = TN (8,147  8,75,7)
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Taeorem 3.1. Let « be an arbitrary point in 4 and let B be a
subnetwork of 4. Then A(x,B) consists of distinet points in B each
of which is either an end point of B or a reflection point of «.

ReMArg. If B has no end points, then A(x, B) € 7T(«x).

Proor. Let f be an extreme point of x on B. We make the assump-
tion that f is neither an end point of B nor a reflection point of «,
and show that this leads to a contradiction to the assumption that g
is an extreme point.

According to the antithesis, we have 7, > 2 in B and n, = 1.
This is to say that there is at least one edge or part of an edge of A4 in
B, say w», starting from f but not belonging to any (x, 8)-path. We
denote by 4 the other end point of ». Since v c|: (x, #), we have

(3.1) Sap < Sy + L(v).

From any inner point 6 of v, the shortest path to a must pass through
y, since otherwise s, > s,; against the extreme point property of f.
Thus s, >s,, + s, which contradicts (3.1) when 4 is close enough
to f.

3.2. Extreme points on basic eyeles

We shall now study the extreme points on basic cycles more closely.
In 2.4 we defined a basic cycle as a cycle D which satisfies the following
condition: to any two points «, f of I there is an (x, f)-path which
belongs to D,

1

e
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We first consider the case that B, is a point x whereas B, is a
basic eycle D). According to Theorem 3.1, A(x, D) always consists
of re!lection points of x on D; in fact we shall prove more:

TareorEM 3.2. If p is a reflection point of x, then there exists a
basic cycle D containing f, and we have A(x, D)= (ie. f is the
only extreme point of x on D).

Fig. 3.2

Proor. We first assume that p € T(x). By the definition of an
essential reflection point, there exists a cycle C belonging to (x, f)
and containing x and B. The points «,f divide C into two (x, f)-
paths ", v". Let ¢ €v and &” €%" be junction points and denote

8yper = se‘ﬁ -+ Sgoe s
Spae” = Sea + Sge” -

We shall distinguish two cases.
1° For all & €¢', ¢" €v", the equation

8»:'s" - mjn (sr'Dh:" ’ sf'ﬁf-“)
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is valid. Then, by the definition of a basic cyele, (' is the basic cycle
whose existence is asserted in the theorem.
2° There exists a pair of junetion points & €', " €2 for which

8, << min {s,,.., 8, g0} -

If there are several pairs of points fulfilling this relation we shall examine
the pair of points ¢, &" for which s..+ 5,4 is minimum, This pair
can be chosen so that none of the (¢, ¢")-paths has any common points
with ' except the end points ¢, £”. T.et », be one of the (¢, &”)-paths.
If ] is the part of »' bounded by # and & and »" is the part of »"
bounded by g and &”, it can be shown that the cyele

Cle’. B e") =0, =v Uy U
is a basic cycle.

In fact, it can easily be seen that if two points of ¢, could be con-
nected by a shorter path than those belonging to €, there would be
a new pair of junction points & €v’, & €2” and a cyele C{F,f, &)
the length of which would be less than

LC) = 8,0 4 8,g,0
This, however, would contradict our assumptions on ¢ and ¢’. Hence
C, is a basic eycle.

To prove that €, can be chosen for D, it remains to be shown that
Alx, C)) = f, le. that s, < s, for every »€C, y + 5. This is
self-evident if y €, Uw], since 2 Uo" C(x, ). If y€w, then we
have

8y, < (s, + 8q b o8 0)

Xy — o

< (Sa + Saur T+ Sep) = Sy
Since 8« < &,p- -

We have hitherto supposed that § € 7)(x) and verified the theorem
in this case. The case 8 € T',(») can be reduced to the previous one,
since, by Theorem 2.3, there exists a junction point y € (%, §) for which
f € 1i(y).

Remark. If the order 7, — 1 of the reflection point # is higher
than 1, one can see, by inspecting the foregoing proof, that there exist

Y

n . .
at least ( g"‘) = ng — 1 different cyeles like € and hence it can be

concluded that there are at least (ng"‘) basic cycles to which the theorem
applics,
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The following corollaries are immediate consequences of Theorem 3.2.
Corotrary 3.2.1. If a and § are reflection points of each other,

then there exist basic cycles I’ and D" such that & € A(D", D),
BE€AD, D). )

Let + be the number of basic cycles in 4 and let the basic cycles
be denoted by Dy, D,, ..., D.

CoroLLARY 3.2.2. The cvclomatic number of 4 is at most equal to
the number of basic cycles, i.e., m <r. If 4 issingular, then m < 7.

This is true for nomsingular networks, according to Theorem 2.7.
From the remark made after the proof of Theorem 3.2 and from (2.6)
it follows that m <¢ r for singular networks.

3.3. Torngvist networks

Networks for which r =m will be called T'érnquist networks. By
Corollary 3.2.2, all Térngvist networks are nonsingular. In practice,
planar networks are usually Toérngvist networks since, as remarked in
1.3 (Euler’s formula), the cyclomatic number m equals the number of
the faces of the planar network, and the faces are usually the only basie
cycles,

A simple example of a network which is not a Ttrnqvist network is
that formed by the edges of a cube. Here r = 6, but

m=12—8+1=35,

By Theorem 3.2 and Corollary 3.2.2, we have the following corollary
on Térngvist networks.

CoroLLARY 3.2.3. In a To6rngvist network every point has precisely
one extreme point on each hasic cycle. The extreme points «: of x on
the bagic cycles D;, ¢=1,2,...,m are all different and identical
with the reflection points of «.

We shall make use of the shorter notation

Ay =AWD:, D)y, i,j=12...,r
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for the set of extreme points of I); on D;. Hence, by the definition of
a basic cyele, we have

Ag =Dy, A e
Correspondingly we denote
8. ==aloc ), L TR
8y =ally, Dby, v =12, . .ok,
ay; = L(dy) , g =" ek NSk,

Let us study the structure of the sets A; more closely. First con-
gider a path » which does not contain junction points, or reflection points
of junction points, as inner points; in particular, we shall examine the
extreme points of » on a basic cycle D.

Let « € v have as an extreme point on ) a point 8 which, according
to Theorem 3.1, is also a reflection point of «. If € T,(x) for all
x €v, then A(v, D) consists of a finite number of distinct points on D
all of which are reflection points of junction points. This follows from
Theorem 2.3.

On the other hand, if for some « € » we have g € T(x), it is seen
directly from Theorem 2.4 that A(D,v)=v and A(v, D)c T,(v).
The set A(v, D) then consists of one or more paths each of which has
the same length L(v), according to Corollary 2.5.1. In particular, if
A is a Tornqvist network, then, according to Corollary 3.2.3, A(v, D)
consists of a single component, and L(4(D,v)) = L(A(v, D)) = L(v).

Since we may now suppose that D; consists of paths v, h=1,2....,p
none of which contains junction points, or reflection points of junetion
points, as inner points, it follows that

8; = max s(vn , 1) ;
h
hence we have arrived at the following theorem:

TaeoreEM 3.3. The set A; consists of a finite number of paths
and distinet points on D;. If A4 is a Toérnqvist network, then a; = aj;.

Usually Ay is a proper subset of Dj;. There are, however, cases in
which Ay = D;. For instance, in the network formed by the edges of
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a cube we actually have the situation A; = D; for the opposite faces
of the cube. This case is never possible in Térnqvist networks, as stated
in the following theorem:

TeEOREM 3.4. In a Toérnqvist network A the set A4; is always
a proper subset of D; when @ # j.

Proor. Let us suppose, to the contrary, that the Térnqvist network
A contains two basic cycles D;, D; such that Ay = D;; it will be
shown that this leads to a contradiction. It is first verified that for all
points «,f on D; we have s, =s,, where «; and f; are the
extreme points of « and f on D, It may be noted that x; and f;
are unique, by Corollary 3.2.3.

Next, let & be the set of all special points in 4, and consider the
set E; = D;N (£ UT(E)). This set consists of a finite number, say

p. of points. We denote these points by y,,7,,...,7, It is assumed
that y, and .., (A= 1,2,...,p, y,,1 = 7)) are consecutive points
on Dj.

Let « be an inner point of the path (y,, y5.1) N D; and let «; be
the extreme point of x on D Conversely, since by the antithesis
A4; = D,;, and therefore s,, = s; x is seen to be the extreme point
of «; on D; and thus x € T(x;), by Theorem 3.1. From this we deduce
that « € T(x,), since if x € Ty(x;), we would, by Theorem 2.3. have
x € T(E), which is impossible according to the definition of E;. Thus
« € Ty(x;) and from Theorem 2.4, 3° it follows that s, = Baiti when

both of the points «, f are on the same path (y,, y,.,) N D;. Let the
extreme point of y, on D; be yp. Then also A e

The paths (yuvu )N D, R=1,2,...,p can meet only in
the points i, R'='1,2,.'.. ,p, since'f" & # v b =1,2/..,p
were a common point of two or more such paths, then the extreme
point d; of & on D; would not be unique, and this would contradict
Corollary 3.2.3. We thus conclude that the points y;, 5. ..., ¥u
follow each other in this order along D; and that

P
4; =D, ﬂhUI (Phi s Vhsr.d) = D;.

Since B h=1,2,...,p, we have Lore — Bnns

h,g=12,...,p and finally s,,=35,,, «€D;, €D;, since D,

i ¥

is a basic cycle.
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We shall now prove that D; and I); cannot have any points in
common. Indeed, if x were such a common point and «; the extreme
point of x on Dy it would follow that s,, = sy = s; = 8;, since
x € A;. This would mean that « is an extreme point of a; both on
D; and I);, which again contradicts Corollary 3.2.3.

Fig. 3.3

Let us consider an arbitrary point « € D; and its extreme point
aj on D; Let v be an («,x;)-path. Since D; and I); cannot have
any points in common, there exists a junction point y € D), in which
v takes off from D; The path » then has no points except y in com-
mon with D; between y and x;. Since it has been shown that 4; = D,
there must exist a (y, y;)-path

e, 8 =8, =8 and s, = 8,

r¥j vy’

v' passing through «;. It follows that » and v’ coincide between y

and x; Hence v and D; have no common points except the junction

point y. Becausz y is the extreme point of y; on Di, we must have

n,, = 3. However, since a Térngvist network is always nonsingular,
J -

this is impossible. Thus the assumption 4; = D; is false.
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4. THE DISTANCE DISTRIBUTION
4.1. Formulation of the problem

The distance distribution in a network can be investigated starting
from different basic assumptions. One natural starting point is as follows.

In a network A we choose two points x and f at random inde-
pendently of each other. The expression ‘at random’ means that the
probability of choosing « (and likewise f) from an arbitrary subnet-
work B of A equals ¢ 'L(B). In other words, we assume the random
points & and f to be uniformly and independently distributed over A.
The distance s, between x and f will then be a random variable having
a certain distribution depending only on 4. Our objective is to determine
this distribution.

We shall use the notations f(s) and F(s) for the density and distri-
bution function, respectively, of the random variable s,,. Similarly,
Ju(s8) and F (s) will denote the conditional density and distribution
functions, given x.

4.2. The funetions L,(s), F,(S), f.(S)

The points f whose distance from a fixed point « is less than s
constitute a subnetwork of A4 the length of which will be denoted by
L.(s), ie.,

ch('g) Gs L{ﬁ] 3(1,&' S S} £
Obviously, the conditional distribution function F (s) is
F (8) = P,y < 8| a} = a™L(s).

Let us give to s a positive increment As and form the corresponding
increment of L,(s). By the definition of n,(s) we have, for a sufficiently
small As,

Ly(s + 4s) — L(s) = L{B| s < 8,5 < 8 + A8} = my(s) 4s.

Hence the function L (s) is continuous on the right and possesses a
right hand derivative n,(s) at every point s.
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In a similar manner it can be shown that L (s) is alto continuous
on the left and has the left hand derivative n(s) at every point & except
at some of the points (2.3).

Since F (s} is up to a constant factor ¢-1 identical with L,{s), it
follows that F,(s) is continuous at every point s and has the derivative
aln,(s) for every value of s except for some of the values (2.3). The
conditional density function f,(s) can therefore be written in the form

(4.1) Jals) = a7lny(s) .

4.3. The density function f(s)

The distribution function F(s) of the random variable s,, can be

written as the expected value
F(s) = EF (s) .
The corresponding density function f(s) is then by (4.1)
fls) = Bf (&) = a=tHny{s) .

Observe that differentiation under & is permitted in this case (cf,
CRAMER [2], p. 67). Using the expression (2.5) for n,(s) we find

af(s) = 2g(s) + 2 (n, — 2) Egls — 5,,)

k1

—2F >y — Dels = 5y)-

* 5 ET(a)

Observing that, for any fixed # and random «,
Fy(s) = Plsyg << s} = Egls — sy)

wo finally obtain

(4.2) af(8) = 2g(s) -+ Z (n, — 2) ¥, (s) — 2e(s)
where
(42) efs) = B D (mu Dgls — s) -

X HETI™)
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To make the expression of f(s) more explicit we need suitable for-
mulas for # (s) and e(s). F,(s) can be evaluated by integrating both
sides of (4.1) and using again (2.5):

x

{4.3) ulF (s} = a /.fm(s) ds = [ﬂa(s} ds

1)
— 2sp(s) + Z — ) (5~ 8,,)

—22(%“”W%WW*%L
#ETtx)
The construction of a suitable expression for e{s) is more difficult. From
(4.2)" and (2.6) it can be seen that e(s) is a monotonically increasing and
non-negative function of s and that always e(s) <\ m.
In particular, if 4 is a tree then e(s) = 0 for all s and we have
simply

af(s) = 2q(s) + X (v, — 2) F, (s)
k=1
where F,_k(s] is now

FP,‘(S) =2a lsp(s) +at S (m, — 2} (s — 8,0 pls —s,.,)-

4.4. Decomposition of e(s)

We shall consider e¢(¢) more closely only for Tornqvist networks.
In the rest of this chapter it is thus supposed that the network 4 is
a Toérnqvist network, i.e.. the cyelomatic number m equals the number
r of basic eyeles. In Chapter 5 we shall return to the gencral case.

Duc to the nonsingularity of all Torngvist networks, we always have
ng < 2, and (4.2)" can be written as

E' s ezrfx — Sl

By Corollary 3.2.3, we may simply sum over the basic cyeles, thus ob-
taining

e(s) = B D pls — s,) —

¥ =1

lp(é’ - Sm‘)

il

" by
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where s, (cf. 3.3) is the distance from « to its extreme point x; on 1),
If we denote

e,(8) = Ep(s — s8,),

it can be seen that e(s) has been decomposed into a sum of m terms:

(4.4) es) = . els).
i=1
We then consider a particular e(s) and write it into the form
(4.5) ei(8) = a~1L4(s)
where

Li(s) = aBig(s — s,,) .

&

Denote by A,(s) the set of all points « in 4 for which s, <s. It

follows that
[1 if « € Ai(s)
Plo — 8 =
lO if « & Ais)

from which we deduce that
Li(s) = L{As)} .

Hence Li(s) is a function associated with the basic cycle D; in the same
way that the function L (s) was associated with the point «.

4.5. The funetion n,(s)

With every basic cycle D; we shall associate a function ni(s) ana-
logous to the functions #n,(s) that we have associated with the single
points a. If s has none of the values

d=usy , §=1,2,...,m

(4.6)
k:l.‘l,...,mﬂ

we define n,(s) as the number of points & for which s, = s. For the
values (4.6) we define ni(s) as the limit on the right of the function
previously defined. This is possible, since ni(s) is a step function with
possible discontinuities at the points (4.6).
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We shall show that n(s) cannot have other discontinuities. Consider
the jump of n,/s) caused by a point x for which s,, is not equal to
any of the values s;, j=1,2...,m. Then n,, (ic., the relative
degree of x with respect to its extreme point a; on D;) equals 1.
Indeed, if we had #n,, > 1, then x would be an extreme point of D;
on some basic cycle D);, according to Corollaries 3.2.1 and 3.2.3. In this
case s, = &; against our assumption about «.

Hence we conclude that the jump of n,(s) at s = s,, caused by « is

(ny — narx,—) = Mgy, = Ny — 2.

In particular, if s,, is not equal to any of the values (4.6), the jump
equals zero, since x is then a line point.

It has been verified that the only possible discontinuities of n(s)
are at the points (4.6). On the other hand, since ni(s) is, by definition,
integer-valued at all points except those of (4.6), and changes its value
in these points only, it is continuous and constant between any two
consecutive points (4.6). Thus, n,(s) is a step function similar to n(s).

We now consider the jump of ni(s) at s =s; caused by the set
Aj;. We recall that A4 is the set of points on D; possessing the extreme
distance s; to D

njj=3, jump=—2x343=-—3.

Fig. 4.1
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Let us denote the complement set of A; with respect to D; by
Aj;. According to Theorem 3.3, the set A; consists of a finite number
of open paths on Dj;. Let the number of connected components in A
bie .04
Since A.‘,’ — .D.', we have x{,'i =@ and Nii — 0, $= 1, 2, o g 0
If @ #j, then n; >0, since A; is in this case a proper subset of
D;, by Theorem 3.4. Hence, when i # j, n; also indicates the number
of components in 4.

Since for every point x € A; we have ; < 8, the jump of
nf(s) at s=wsy caused by A; is — 2ay p]us the jumps caused
by those junction points of A which belong to A;. On account of
the nonsingularity of A4 the jump caused by such a junction point «
is 7, — Ny, = Ny, — 2, and thus of the same form as the jumps caused

by the other junction points, as stated above.
As a result of these considerations we obtain for ni(s) the expression

g m

(4.7) ns) = D (m, — 2)pls — 8,;) — Z ngpls — s;

for all values of s.
By its definition, ni(s) vanishes when s becomes large enough.
In a similar manner as in 2.8 we obtain the equation

0= (m, —29—2D n
k=1 j=1
which by (2.2) is equivalent to

m
m—-l:Znij.
j=1

It has been established above that n; >0 for all ¢,j=1,2,...,m,
and n; = 0 onlyif ¢ =j. Hence the last equation implies that n; = 1
when @ -+ j. We thus have the following result which is stronger than
Theorem 3.4.

Turorem 4.1. In a Térnqvist network any set A4; with ¢ #j is
either a path or a single point on D).

It is interesting to notice that if A is not a Térnqvist network, the
gets Ay actually may possess several components. For instance, in
Fig. 4.2, the network consists of four basic cycles D, = (a',a", ", f'),
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P

E'Ir

12

Fig. 4.2

=Bt ATt De= (o, 8" el ) Dy =" a" 5% &) and-we
have two components in A, and Ay, The network is not, however, of
the Térnqvist type, since m = 3.

4.6. The funection L,(s)

In 4.4 it has been shown that L;/s) admits the interpretation
Li(s) = L{Ai(s)}
where
Ai(8) = {«| 8, < 8},

We consider the function Li(s) for some value of s and give to s a
positive increment As. If As is small enough, Li(s) will then, by the
definition of ni(s) (cf. 4.5), increase by

Li(s + As) — Ly(s) = L{a| s << 5y, < 8 + As} = ny(s) ds ..

Hence Li(s) has ni(s) for derivative on the right for all s.
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In a similar manner one may show that /l{s) hag also a left hand
derivative equal to ni(s) for all ¢ except for some of the values (4.6).

We observe that Li(s) is continuous for all values of s except
s=s8;.J=12,....m at which it has a jump ay; — L{4dy). Hence
Li(¢) can be written in the form

Lis) = fn-;(s) ds — Z aypls — si)

j=1
U

which, by {4.7) and Theorem 4.1, is equivalent to

(4.8) Lis) = D (n, — 2 (s — 5, ) gls — 5.

k—1

4.7. The density function f(s) in a Térnqvist neiwork

In order to find an explicit expression for the density funetion f(s)
of s, we have only to combine the results of the previous scetions.
According to (4.4) and (4.5), we have

e(s) == a1 Z Li(s) .

=1

Using the general formula (4.2) of f{s), we then obtain

(L9} af(s) = 2 gls) + \é (n, —2) P (s) — 2a? ; T.43) .

The factor F, (s) Is obtained from (4.3) on taking « =g, and noting
that the nonsingularity of the network implies n,, — 2. Thus

my,

UFﬁk(S) = 2 sp(s) + ’; (nﬁh = s — s, ) wls —s,,)

R

]
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By substituting this and (4.8) into the expression (4.9) of f(s) we obtain
the final formula

{4.10) a?flsy = [4 {m — 1) s + 2 a] ols)

+ XD, — 2, — 2) (s — s, ) 0ls — 5,,)

=1 k=1 th
n m
‘ >1 v (s 5]
2L 2 (Zs — 2y — a;)pls — &)
p=] j=1

— 4 ‘ (s — s) pls — 3)

The graph of f(s) consists of finite line segments and it has at most
‘w l')
-

-+ 1 discontinuitics, located (if present) at the points s = 0

and s ==g;4j—1.2...,m

4.8, Examples

We shall apply the previons results to two clementary cases.

1° We first consider a network consisting of a single edge ». Let
the end points of v be £ and &, Since v is a tree, ¢(s) vanishes
tdentically and we have

af(s) = 2 g(s) — L P, (s)
where

[

af, (s) = 2sp(s) — sp(s} — (s —a)pls —a), k=1,

Hence
fle) = 2a7a — ¢) [p(s) — p(s — a)].

It can be seen that f(s) decreases lincarly from 2¢~! to 0 in the interval
(0, ). Elsewhere f(s)} vanishes. The expected value of the distance

between two random points is
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2°  As a second example let us consider a single cycle 4 = D,. In
this case

af(s) = 2 gls) — 2 a~1Ly(s)

where
: a
Ly(8) = acp(s =3P
and finally

f(5) = 2471 lw(S) —ols - ;)] .

[ a
The distance is uniformly distributed over the interval (0 ; ;) :

5. GENERALIZATION AND PRACTICAL SOLUTION
5.1. Generalization of the problem

In Chapter 4 we worked out an expression for the distribution of the
distance between two independently chosen random points in a Térnqvist
network. The uniform distribution of these points was a basic assump-
tion, as stated in 4.1.

The solution presented can be applied in practice without any diffi-
culty. It is, however, a drawback that the solution is applicable only to
networks of a certain type, namely, to Toérnqvist networks. Also, the
assumption about the uniform distribution of the random points over the
whole network is in most cases unrealistic.

For these reasons we have developed another method, based on more
general assumptions and suitable for all networks. The general method
cannot, of course, be as economic in computations as that presented in
Chapter 4, but its larger applicability can be considered a decisive
advantage.

The generalized formulation of the problem is as follows.

Our aim is still to study the distance s,, between two independently
chosen random points «, # in a network 4. However, « will now be
interpreted as a source sending traffic with a certain intensity, whereas £
is interpreted as a sink similarly receiving traffic. In a precise form our
agsumptions are:
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The network A is partitioned into subnetworks A4,, 4,,..., 4,.
(In the partition the points of division are considered as belonging to
all adjacent subnetworks.) The probability of choosing the source «
from within A4; is

Pla€ddt =9, $=1,2,...,%
and the probability of choosing the sink £ from within A4; is
Pl Ay ~9p, §=10...,k.
The choices of the source and the sink are independent, i.e.,
P{x€A:,pEA}=pig, i.j=1,2...,k.

Inside the subnetworks the distribution of the random points is uniform.
The above assumptions imply that for each subnetwork B; of 4,
and each subnetwork B; of A; we have

L(B;) L(B))
P{“GBv‘}=PsTAi), P{ﬁEBj}=¢L"L(Tj),
L(B;)L(B;)

EEESGRED) =B

The generalized distribution function F(s) of s,, is then

-
=

F(S):P{sa3§3}=_ _

= &F

PiQJ'P{Su.B e EA,-,ﬁGAj}

f
N~
=

.
I
bl

.
Il

piqi Fiy(s)

j=1
where F(s) is the conditional distribution function
Pij(s) = P{s,; < s|a €4:,p € 4;}.

The corresponding density function f(s) takes the form

k k

f8) =2 D pigifisls)

i=1 j=

where f(s) is the density function corresponding to the conditional
distribution function Fyfs) .
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+

The intensities ¢, ;. describing the sending and receiving of traffie
in the subnetworks 4,, 4,, . .., A,. are (as a consequence of the uniform
distribution within subnetworks)

Di .
f,‘—L(Ai), 2—1,2,...,]6
9 .
= =1,2...
u_l L(AJ), j 17 yk

Hence the intensities have to satisfy the conditions

k k
D L) = D wLid) = 1.
i=1 =1

Using the intensities we may write f(s) in the form

k k
(5.1) Flo) = 2 2 b L(Ad L(4)) fi(s)

= L t; L{As) fils)

where fi(s) is the density function

k

k
Fisy =D g fs) = Z u, L(A;) f(5)

=

corresponding to the conditional distribution function

Fi(s) = Pls,, <s|x €A},

Hence the density function f(s) can be computed as a weighted sum

of the conditional densities f,(s). The functions f(s) can be determined

using the results presented in Chapters 2 and 4, since we have assumed the
distribution of « and £ to be uniform inside the subnetworks A,

Ay, ..., 4,.

5.2. Solution of the generalized problem

We shall describe only the main principles of the solution which is
based on the assumptions made in 5.1
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We suppose that the intensitics are constant on each edge. The re-
flection points of the junction points divide the edges of A into paths,
to which Corollary 2.5.1 applies. We consider these paths, as well as

edges without reflection points, as the elements A;. 4, ...,4, of a
partition of A; they will be called basic paths.
According to Corollary 2.5.1, the reflection set T(4:),i=1,2,...,%,

consists of distinet points and of certain paths (reflection paths)
Ail !Aiza--';A;‘ki

each of which has the length L(4;). According to (2.6}, we have & < m.
Oneach Ag, h=1,2,...,%, the intensities are congtant, since other-
wise A, would contain a junction peint which would have a reflection
point on the basic path A,

Fig. 5.1 represents a network 4 and its partition into the basic
paths A;. The reflection points of the junction points are indicated by
stars (+} and the reflection paths of one A4; by heavier lines.

b

Fig. 5.1

The conditional density function fi(s) can now be computed using
a partition By, B,, ... the elements of which are

19 A,

20 Aih, h=1,2,--n,ki,

3° the remaining bagic paths, and parts of such paths.
When computing f{s) we thus use a special partition {B;},j = 1,2,...
which, for the most part, coincides with the partition 4,, 4,, ..., As
The conditional densities f;(s), of which f(s) is a weighted sum, are
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of three types corresponding to the three types (1°, 2°, 3, as listed above)
of B;, to which the sink f can belong.

Let us denote L(4;) = ¢;, L(B;) = c,, and let the minimum distance
between the points of A4, and B; be ¢;. The density functions f(s)
are then as follows. (Each type can be easily derived using the densities
of the examples 1° and 2° in 4.8 as conditional densities.)

1° If B; = A;, we have
Fife) = 2er%e, — 9) [p(s) — (s — )]

A
f;ﬂS)'
2.
c
: B= A,
c‘
. re
Fig. 5.2
2° If Bj=Adun, h=1,2,...,k, in which case ¢; = ¢,, we have

fij(s) = 2¢77(s — ) [p(s — ¢3) — @ls — ¢, — ¢5)].
B;= A
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3° If B; is one of the remaining basic paths, we have
fi(8) = ei'es " [Ms — €5) — As — e1— ¢5)

— Ms — ¢y — ¢g) + As — ¢, — €, — &5)]
where A(s) = sp(s) .

B;
A PPl R e
a Cy
fijis)
Cy
c' A
c.c B - s —— e
1>1 AT
. :
Cy C'+Cy C4Cy  C+Cy#Cy S
¢ =minl(c,,c,)

c"=max(c,.c,)
Fig. 5.4

Since f(s) is a weighted sum of functions f;(s) of the types de-
scribed above, we conclude that the graph of f(s) is of the same form
as that of f(s) in Chapter 4, and it has a finite number of discontinuities.

5.8. Computer program

A general program for the evaluation of the density function f(s)
of an arbitrary network A has been written for the computer Elliott 803.

The program works according to the principle explained in 5.2.
In order to find the basic paths, it first locates all reflection points of
junction points. Using the partition thus obtained, it then computes
the density function f(s). The values obtained are exact when the data
concerning 4 are given as integers.

In the process of locating the reflection points of the junction points
a technique of »marching point sets» is employed. It may be described
as follows.
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From the junction point « a fictitious set of »marching points» is
dispatched in all directions with a constant speed. The »marching set»
follows all paths of the network and splits into subsets at the junction
points. The points where two or more sets meet again correspond to
the reflection points of «. In such a point the marching sets become
extinet, if the reflection point is not at the same time a junction point.
This process simulates the behaviour of the function n,(s). A similar
technique is used when searching for the reflection paths A of the
basic paths A..

The program takes in the information about the network 4 by
edges. The labels of the end points, the length, and the two intensities
are given for each edge. The program is subject to no restrictions con-
cerning the structure of the network. The most important capacity
limitations are:

number of edges m,; < 250,
number of basic paths &k < 1250,
max 8, < 500 .

Each restriction can be relieved at the expense of the others. The running
time varies considerably depending on the nature and size of the network.
The running time for a 5 x 5 net of squares is 16 minutes, but for a
10 x 10 net it is nearly 3 hours.

5.4. Applications

We shall close our study with a discussion of the possibilities of applying
the previous results.

From the point of view of practical traffic studies, the fact that we
have ignored the capacity limitations seems to be a weak point in our
model. This is, however, only a seeming deficiency, since traffic con-
gestion can be accounted for by measuring the distances in time.

Another limitation seems to be that the amount of traffic between
two regions is assumed to depend only on the sizes and the traffic in-
tensities of these regions. There is no accounting for the distance between
the regions. An arbitrary gravitation law depending on the distance can,

however, be added to our model by weighting the density function f(s)

with a given (usually monotonically decreasing) weight function g(s).
Henece the density function f,(s) induced by the gravitation law g(s) is
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f(s) g(s)
(5.2) L B e v

(
f (s) g(s) ds

Conversely, if an observable traffic flow obeys a law of this kind with an
unknown gravitation law g(s) (which is obviously determined only up
to a constant factor), then g(s) can be estimated from (5.2) by com-
puting f(s) from the network and estimating 1(s) by sampling.

The above considerations are concerned with the total traffic in A.
In practical studies, however, one is often interested only in the traffic
between two particular regions. It is quite possible to use the results
achieved above in dealing with such problems. We shall illustrate this
with an example.

Let us assume that one has to find the distance distribution pertaining
to the traffic between the two separate regions (subnetworks) A, and
A, in A. The internal traffic of A, and A, and the traffic sent and
received by the other parts of 4 have to be ignored. The traffic outside
4, and 4, is eliminated by making the pertinent intensities equal to
zero. For the sake of simplicity, we shall also suppose that in 4, and
A, the intensities are constant.

We introduce the notations L(4,) = a,, L(4,) = ay, ay = a, -+ a,.
The distribution function F(s) can then be written in the form

F(s) = P{s,; < s}
= aiay Pls,, < sla€4,,8 €4,
+ aza7’ P{s,; <sla €4;,8 € 4}
+ 2a,a,0;° P{s,, <s|a€A4,,fEA or a €A,,HE€ A,
= aja, " Fy(s) + azay® Fy(s) + 2 a,a,a,° Fy(s)

where F(s) and F,(s) are the distribution functions related to the
internal traffic of 4, and A, while F(s) is the distribution funetion
for the traffic between A4, and A4, Applying the same argument to
the density functions we obtain

flE('g) = (2a,a,)! {aﬁf(s) = a‘;‘fl(s) = aﬂg.fz(s)]

from which fi;(s) can be evaluated, since the densities f(s), fi(s), and
fu(s) are related to the internal traffic of the networks A, 4,, and A,.
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