By the ESTIMATE operation also maximum likelihood estimates for parameters of a user-defined univariate distribution can be computed. The distribution has to be defined by a MODEL specification of the form: 10 *MODEL <name of model> 11 *LOGDENSITY=<logarithm of the density function> All other specifications are same as in ESTIMATE for regression models. Example on the next page: ....................................................................... Estimation of a logit model: FILE CREATE TEST,24,3,64,7,10000 / Creating file TEST (10000 cases) FIELDS: 1 N 4 X1 2 N 4 X2 3 N 1 Y END VAR X1,X2,Y TO TEST / Making simulated data values X1=rand(2002) X2=rand(2002) Y=int(rand(2002)+1/(1+exp(3-2*X1-3*X2))) Y is 1 with probability 1/(1+exp(3-2*X1-3*X2)) and Y=0 otherwise. Estimation of the model on the next page: Estimation of the logit model: {P}=1/(1+exp(C+a*X1+b*X2)) / Shorthand notation for the model function MODEL LM1 LOGDENSITY=Y*log({P})+(1-Y)*log(1-{P}) ESTIMATE TEST,LM1,CUR+1 / METHOD=M PRIND=0 Estimated parameters of model LM1: C=2.87264 (0.0711958) a=-1.99688 (0.0807001) b=-2.75048 (0.0835568) n=10000 log(L)=-5830.526990 nf=56 Correlations: C a b C 1.000 -0.714 -0.749 a -0.714 1.000 0.188 b -0.749 0.188 1.000 E = More information on ESTIMATE