TWO FORMULAS RELATED TO TWO-DIMENSIONAL NORMAL DISTRIBUTION

SEPPO MUSTONEN

Abstract

Generalized Box-Müller formulas for generating two-dimensional normal distribution with correlation coefficient ρ are derived. Also equations for contour ellipses of the same distribution are derived in a parametric form suitable for plotting. Both results were presented in the lecture notes "Statistical multivariate methods" by the author in 1995 (in Finnish).

1. Generalization of the Box-Müller formulas

Let U_{1} and U_{2} be independent variables from the uniform distribution on $(0,1)$. According to the well-known Box-Müller formulas

$$
\begin{aligned}
& V_{1}=\sqrt{-2 \log U_{2}} \cos \left(2 \pi U_{1}\right) \\
& V_{2}=\sqrt{-2 \log U_{2}} \sin \left(2 \pi U_{1}\right) .
\end{aligned}
$$

V_{1} and V_{2} are independent $\mathrm{N}(0,1)$ variables.
By the linear transformation

$$
\begin{aligned}
& W_{1}=V_{1} \\
& W_{2}=\rho V_{1}+\sqrt{1-\rho^{2}} V_{2}
\end{aligned}
$$

two standard normal variables W_{1} and W_{2} with a correlation coefficient ρ are obtained.

According to the definition of the V variables we have

$$
\begin{aligned}
W_{1} & =\sqrt{-2 \log U_{2}} \cos \left(2 \pi U_{1}\right), \\
W_{2} & =\sqrt{-2 \log U_{2}}\left[\rho \cos \left(2 \pi U_{1}\right)+\sqrt{1-\rho^{2}} \sin \left(2 \pi U_{1}\right)\right] \\
& =\sqrt{-2 \log U_{2}}\left[\sin (\arcsin (\rho)) \cos \left(2 \pi U_{1}\right)+\cos (\arccos (\rho)) \sin \left(2 \pi U_{1}\right)\right] \\
& =\sqrt{-2 \log U_{2}} \sin \left(2 \pi U_{1}+\arcsin (\rho)\right) .
\end{aligned}
$$

Then a two-dimensional normal variable $\left(X_{1}, X_{2}\right)$ with expected values $\left(\mu_{1}, \mu_{2}\right)$, standard deviations $\left(\sigma_{1}, \sigma_{2}\right)$ and correlation ρ is generated by

$$
\begin{aligned}
& X_{1}=\mu_{1}+\sigma_{1} \sqrt{-2 \log \left(U_{2}\right)} \cos \left(2 \pi U_{1}\right) \\
& X_{2}=\mu_{2}+\sigma_{2} \sqrt{-2 \log \left(U_{2}\right)} \sin \left(2 \pi U_{1}+\arcsin (\rho)\right)
\end{aligned}
$$

These Mustonen formulas were also published in "Mathematics Handbook" by Råde and Westergren in 1995 (p.425), Studentlitteratur, Lund.

[^0]
2. Contour curves for the two-dimensional normal distribution

It is well known that a multivariate normal distribution $\mathbf{X} \sim N(\mu, \boldsymbol{\Sigma})$ has a contour ellipse at confidence level P with an equation

$$
\begin{equation*}
(\mathbf{x}-\mu)^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu) \sim \chi_{p}^{2}(P) \tag{1}
\end{equation*}
$$

In the two-dimensional case this can be represented in a parametric form

$$
\begin{align*}
& X_{1}=\mu_{1}+\sigma_{1} \sqrt{-2 \log (1-P)} \cos (t) \tag{2}\\
& X_{2}=\mu_{2}+\sigma_{2} \sqrt{-2 \log (1-P)} \sin (t+\arcsin (\rho))
\end{align*}
$$

for $0 \leq t \leq 2 \pi$.
It is sufficient to prove (2) in the case of expected values 0 and unit variances. Then the contour ellipse takes the form

$$
\begin{equation*}
\frac{1}{1-\rho^{2}}\left(x_{1}^{2}-2 \rho x_{1} x_{2}+x_{2}^{2}\right)=\chi_{2}^{2}(P)=-2 \log (1-P) . \tag{3}
\end{equation*}
$$

By denoting $C=\sqrt{-2 \log (1-P)}$ equations (2) are reduced into the form

$$
\begin{align*}
& x_{1}=C \cos (t) \tag{4}\\
& x_{2}=C \sin (t+\arcsin (\rho))
\end{align*}
$$

Now it is shown that eliminating t from (4) leads to (3).
By using $\cos (t)=x_{1} / C$ we obtain

$$
\begin{aligned}
x_{2} & =C(\sin (t) \cos (\arcsin (\rho))+\cos (t) \sin (\arcsin (\rho))) \\
& =C\left(\sin (t) \sqrt{1-\rho^{2}}+\cos (t) \rho\right) \\
& =C\left(\sqrt{\left(1-x_{1}^{2} / C^{2}\right)\left(1-\rho^{2}\right)}+\left(x_{1} / C\right) \rho\right) .
\end{aligned}
$$

By moving $x_{1} \rho$ to the left side and by squaring, this equation simplifies to

$$
x_{1}^{2}-2 \rho x_{1} x_{2}+x_{2}^{2}=C^{2}\left(1-\rho^{2}\right)
$$

which is identical with (3).
Department of Mathematics and Statistics, University of Helsinki
E-mail address: seppo.mustonen@helsinki.fi

[^0]: Date: 14 May 2012.

