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1. INTRODUCTION 

Our objective is to study the properties of traffic networks with 
regard to distance distributions. More precisely, we wish to determine 
the probability distribution of the distance between two random points 
in a network. 

The basis of our investigations is a certain probability model which 
has been used previously by TORNQVIST in his paper »0n Distribution 
Functions for Quantities Related to Networks* [4]. In the present study 
we shall more thoroughly describe and justify certain ideas presented by 
him. We shall also try to develop these ideas both in theory and in prac
tice. 

Our method of study differs to some extent from the usual presen
tation in the theory of graphs, since we shall consider only metric net
works. Hence we shall be investigating the network as a connected, non-
denumerable point set and not only as a system of distinct and inter
connected points. For this reason our terminology differs slightly from 
that used in the theory of graphs. 

The study is divided into five chapters. I n the introduction we define 
the network and some fundamental concepts related to i t . Some results 
from the elementary theory of graphs are also mentioned. 

Chapters 2 and 3 are devoted to the metric properties of networks. 
In Chapter 2 we consider especially questions related to reflection points 
and reflection sets. Chapter 3 for the most part deals with an important 
class of networks which we call Tornqvist networks. 

I n Chapter 4 we concentrate on our main problem, the derivation of 
the distance distribution under certain conditions. We arrive at an ex
plicit solution for the Tornqvist networks. 

I n Chapter 5 the problem is extended in a more realistic direction 
and a solution for general networks is given. At the end of Chapter 5 
some potential applications are discussed. 
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1.1. Definition of the network 

Let us take an idealized picture, e.g., of a road network, a system of 
traff ic connections, and call i t shortly a network. 

D E F I N I T I O N . A network is a connected metric space consisting of 
a f ini te number of simple arcs of f inite length, having only end points 
i n common. 

I n terms of the theory of graphs this is to say that the network is an 
unoriented, connected graph, to whose edges positive numbers (lengths) 
are attr ibuted. Such a graph can always be imbedded i n a three-
dimensional space, and often i n a plane. 

According to the definition, the network A and each subset B c A 
consisting of arcs has a f ini te length, which means the sum of the lengths 
of the arcs concerned. We denote the length of B by L(B) and let 
especially the length of A be L(A) — a. 

A n immediate consequence of the definit ion is that two points, 
x and /S, which belong to A can be connected w i t h an arc which belongs 
to A, has a finite length, and does not intersect itself. We call such an 
arc a path between the points x, /3. The points a, /? are called the end 
points of the path and they are considered as belonging to the path. 
Thus a path is a closed set. We w i l l sometimes also say that the path 
starts from x and ends i n /? or vice versa. 

1.2. Basic concepts 

Let x be a point i n A. The number of distinct paths starting from 
<x is called the degree of x and denoted b y n^. 

I n the planar network i n Fig. 1.1 the degree na, of oc' is equal to 
(i and the degree of x" is equal to 2. 

According to the definition of a network, na is always f ini te and 
> 1. We also notice that the network A possesses only a f in i te number 
of points x having na ^ 2. We call these points special points. I f 
na = 1, oc is an end point of the network ; i f na > 3, x is a, junction 

point. On the contrary, the points of degree 2 constitute a continuum. 
These points are called line points. I n Fig . 1.1, for instance, the points 

i., and e3 are junct ion points, y x and y2 are end points, and x" 
is a l i n e point. 

On distance distributions in networks 9 

Fig. 1.1 

A n edge is a path between two special points having no special points 
as inner points. I n Fig. 1.1, the path exx" e2 is an edge. Between x 
and e3 there are two edges. 

A path whose end points coincide is called a cycle. A network con
taining no cycles is a tree. A subset of A to which the def init ion of the 
network applies is called a subnetwork of A. 

1.3. Cyelomatic number 

According to the definition of a network, there are only a finite 
number of special points and edges i n a network. Let the numbers of 
special points and edges be m 0 and m 1 ; respectively, and let the special 
points be 

The cyelomatic number m of a network is defined as 

(1.1) m — mx — m0 + 1 • 

Since every edge contributes two units to the tota l degree of the special 
points, we have 

k=l 

and (1.1) is therefore equivalent to the expression 
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m0 

(1.2) » = l + i ^ ( » . , - 2 ) . 

The cyelomatic number TO has interesting interpretations which 
are derived i n the basic theory of graphs. We refer to B E R G E [1] and 
R E I D E M E I S T E R [ 3 ] . 

I f A is a planar network, i t follows directly from the famous formula 
of Euler that m equals the number of the f inite regions (faces) into 
which the plane is divided by A. I n the general case we have the follow
ing interpretation: m indicates i n how many points A can be cut off 
wi thout becoming disconnected. 

I t can be proved that m is always non-negative and vanishes only 
when A is a tree. 

2. M E T R I C P R O P E R T I E S OF NETWORKS 

2.1. Distance in a network 

According to the definit ion of a network, there are only a f inite 
number of paths connecting two points of a network A. Hence there 
exists a shortest path between any two points, and there are a finite 
number of such shortest paths. 

The shortest paths between two points x, fi form a certain subnet
w o r k of A which is denoted by (oc, fi). The distance between the points 
\, fl is defined as the common length of these shortest paths. I f v 
is one of the shortest paths between oc and fi, we usually say briefly 
that v is an (a, jS)-path. 

The distance sa/? is non-negative; i t is 0 i f and only i f oc and fi 
coincide. Obviously s a / J = sfia. For three arbitrary points cx, /S, y, the 
triangle inequality sa / ) < say -f sy/? holds w i t h equality i f and only i f 
y e (a, fl). 

The relative degree of fi w i t h respect to cx is the degree of fi i n the 
nc! w o r k (A, fl); i t is denoted by n^a. I n the case fi = x where (a,/?) 
reduces to the single point fi, we define = 1. Usually the shortest 
path between x and fi is unique and the network (x, fi) consists of 
only one (x, /?)-path. Then nafj = nfi0L = 1. There are, however, cases 
whore (a, fl) is more complex. I n Fig. 2 .1 , for instance, naft = 2 and 

V = 3-

On distance distributions i n networks 1 1 

P 

Fig. 2.1 

The following lemma w i l l be repeatedly needed. 

L E M M A 2.1. y € (x, fi) implies (x , y) f l (y, fi) = y. 
PROOF. Suppose tha t d £ (x, y) f l (y, (i). Then using the triangle 

inequality we have 

8ap ~ Sacy + 9yfi = SaS + S/iy + *fi ~^ V 

— sdS + stfi + 2 sdy > sa/3 + 2 sSy, 

which implies 6 = y . 

2.2. Reflection points 

Let x be an arbi trary point i n A. The number of points fi, for 
which npa > 1, is f in i te , since no edge i n A can contain more than 
one line point fi satisfying n^a > 1. As a matter of fact, i f an edge 
would contain two line points fi,y for which n^a > 1, n a > 1, then 
we would have at the same time fi £ (x, y), and hence say = safj -f- s^, 
and y € («, fi), and hence saji = say -f syf). B u t this would i m p l y = 0 
and thus fi = y. 

The points fi for which n^ > 1 are called the reflection points of 
x in A. The reflection points w i l l play a very important par t i n the 
fol lowing, due to the fact that they are points in which the distance sa/S 

attains local maximum values. This fact w i l l later be brought to the 
fore i n Theorem 3 . 1 . 

I n the following we shall present some basic theorems concerning 
reflection points. 
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2.3. Path triangles 

T h e shortest pa ths vap, vfiy, vya be tween t he p o i n t s a, fi, y f o r m a 

path triangle A(vap, vByt vy0l), i f ^ U p f t U ^ is a cycle . T h e p o i n t s 

oc, fi, y are cal led t he vertices a n d the p a t h s v^, Vpy, vyQC are cal led t he 

sides o f A(v^, Vpy, vya). W e can n o w p r o v e a t heo rem s t a t i n g t h a t eve ry 

v e r t e x has a r e f l ec t ion p o i n t on the opposi te side o f t he p a t h t r i a n g l e . 

T H E O R E M 2.2. T h e v e r t e x oc o f A(vxp, Vpy, vya) has, o n t h e opposite 

side v, a t least one r e f l ec t i on p o i n t oc' f u l f i l l i n g y € (cx, oc'). 

a. 

Fig. 2.2 

PROOF. W e consider t he pa ths be tween oc a n d an a r b i t r a r y p o i n t 

<i € v., a n d denote 

T h u s 8Sa < T h e f o l l o w i n g p r o o f is d i v i d e d i n t o t w o pa r t s depending 

(in whether s ( S a = sda fo r a l l d € Vpy or n o t . 

1° L e t us f i r s t suppose t h a t sSoi = s i a for a l l 5 6 i n o ther 

w o r d s , a t least one o f the (S, « ) - p a t h s goes e i ther t h r o u g h fi or y. 
Consider the p o i n t d 6 ^ for w h i c h 

(2-1) 8ifi = Ji (Sfiy + Sya - Sap) . 

On distance distributions in networks 13 

Such a p o i n t d € vB exists , since 

0 < i (Spy + s y a - s^) < a h 

b y t h e t r i ang le i n e q u a l i t y . Since 8Sf = 8SS + sSy, (2 .1) can be w r i t t e n 

i n t he f o r m 

S<S/S + SS(X = Stly + Syct 

f r o m w h i c h i t fo l lows t h a t 

= St>0 + S$a = Sdy ~\~ Sy<x • 

H e n c e <3 is a r e f l e c t i o n p o i n t o f oc a n d y 6 (oc, d) so t h a t 6 can be 

chosen for the p o i n t cx'. 

2° W e n o w suppose t h a t there exis ts a p o i n t d € vs fo r w h i c h 

s i ! a < s6oi. Thus t h e (<5, a ) -pa ths do n o t pass t h r o u g h fi n o r t h r o u g h y. 
Since v a / S U Vpy U vya is a cycle and therefore oc € Vpy, we conclude 

t h a t there exists a j u n c t i o n p o i n t e € Vpy be longing t o (<5, cx) a n d such 

t h a t t h e (e', a ) -pa ths have no c o m m o n po in t s w i t h Vpy except s . 
I f Vg has several j u n c t i o n po in t s f u l f i l l i n g th i s c o n d i t i o n , we t ake for 

e' t h e p o i n t w h i c h is nearest t o y. 

L e t v be one o f t h e (e , « ) - p a t h s a n d le t e" be t he nearest t o e' 

j u n c t i o n p o i n t i n w h i c h v meets vy0i. I f such a p o i n t e" does n o t exis t 

(i .e. , v meets vap), w e t a k e e" = oc. T h e n we have a n e w p a t h t r i ang le 

w i t h ver t ices e", e', y a n d i t can be shown , as i n the f i r s t p a r t o f t he 

proof , t h a t e" has a re f lec t ion p o i n t oc € (e', y) f l vfiy f u l f i l l i n g 

y € (e", oc'). B u t since e" € (oc, e') , e" € (oc, y), and , accord ing t o the 

d e f i n i t i o n o f e', e i the r e' € (oc, oc') o r y € (oc, oc'), we m u s t have 

£ * € ( « , « ' ) . Since oc' is a r e f l ec t ion p o i n t o f e" f u l f i l l i n g y€(e", cx') 
a n d e" € (oc, oc'), i t fo l lows t h a t oc is also a re f lec t ion p o i n t o f oc a n d 

y € (a, a ' ) . Hence « ' satisfies the r equ i remen t s o f t he t h e o r e m . 

2.4. Classification of reflection points 

W e denote b y T(oc) t h e f i n i t e set o f a l l r e f l ec t ion p o i n t s o f t he p o i n t 

a. T h i s set w i l l be d i v i d e d i n t o t w o subsets. W e say t h a t fi is a n essential 
r e f l e c t i o n p o i n t o f oc, i f fi € T(oc) a n d i f t he n e t w o r k (oc, fi) contains 

a cycle t o w h i c h b o t h ox a n d fi be long . L e t T^oc) be t he set o f the 

essential re f lec t ion p o i n t s o f oc. I t is i m m e d i a t e l y seen t h a t fi € Tr(oc) 
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imp l i e s oc € Tx(fi). T h e re f lec t ion p o i n t s o f a w h i c h are n o t essential 

r e f l e c t i o n po in t s are ca l led unessential. T h e y cons t i t u t e a set 7 a(<x). 

T h u s T(oc) is t he u n i o n o f the d i s j o in t sets Tx(oc) a n d T2(tx). 

I n t u i t i v e l y , i f fi € Tx(oc), a shor t d i sp lacement o f oc a l o n g a ce r t a in 

p a t h w i l l a lways cause a s imi la r d isp lacement o f fi; see F i g . 2.3 a. O n 

t h e o ther hand , i f fi € T2(oc), the p o i n t (9 remains f i x e d a l t h o u g h oc 
is d isplaced; see F i g . 2.3 b . The ob jec t ive o f t he t w o f o l l o w i n g theorems 

is t o express these proper t ies o f r e f l ec t i on po in t s i n a more accurate 

f o r m . L e t us f i r s t consider the unessential r e f l ec t i on po in t s . 

T H E O R E M 2.3. I f fi is an unessential r e f lec t ion p o i n t o f oc, t h e n 

there exists a t least one j u n c t i o n p o i n t i n (oc , 3) f o r w h i c h 8 is an 

essential r e f lec t ion p o i n t . 

P R O O F . Since 8 € T(oc) a n d therefore nBa > 1, the re ex is t a t least 

two (oc, /3)-paths, s t a r t i n g f r o m 8 i n d i f fe ren t d i rec t ions . L e t vx a n d 

t>| be such paths a n d l e t y be t h e i r c o m m o n p o i n t nearest t o 8. Such 

a p o i n t y exists, since vx a n d v2 meet a t least i n oc. T h e p o i n t y 
cannot , however , coincide w i t h oc, for i n t h i s case vx U v2 w o u l d be a 

oyole a n d B € Tx(oc), c o n t r a r y t o our a s sumpt ion . 

Since nyB > 2, a n d since y is, b y L e m m a 2.1, t h e o n l y c o m m o n 

p o i n t of (<%, y) a n d (y, 3), we have n > 3. Hence y is a j u n c t i o n 

p o i n t and belongs t o (oc, 8). F u r t h e r m o r e , 8 € Tx(y), since the par t s 

of and v., bounded by fi and y f o r m a cycle 

On distance distributions i n networks 16 

I n order to es tabl ish a corresponding t heo rem for essential re f lec t ion 

p o i n t s , we m u s t f i r s t def ine the concept o f a basic cycle. 

D E F I N I T I O N . A cycle D is a basic cycle , i f be tween a n y t w o poin ts 

oc, fi o f D there is a shortes t p a t h w h i c h belongs t o D. 
R E M A R K . I t w o u l d be possible to r e s t r i c t the c o n d i t i o n o f the de f in i 

t i o n t o t he j u n c t i o n p o i n t s o f the cycle . A c t u a l l y , i f a cycle G contains 

t w o p o i n t s oc, fi such t h a t no (oc, /?)-path belongs e n t i r e l y t o C, t h e n 

G has also t w o j u n c t i o n po in t s the shortes t paths be tween w h i c h have 

no p o i n t s i n c o m m o n w i t h C except t h e i r end po in ts . T h i s fac t can be 

establ ished b y i n spec t i ng the end p o i n t s o f the c o m m o n pa r t s o f some 

(oc, /3)-path and G. 

A n immed ia t e consequence o f the d e f i n i t i o n o f a basic cycle is t h a t 

eve ry p o i n t on a basic cycle D has e x a c t l y one essential r e f l ec t i on p o i n t 

o n t he same basic cycle D a t a d is tance o f \ L(D). I n a d d i t i o n , i f oc 
a n d fi are t w o a r b i t r a r y po in ts o f D, t he distance be tween the i r re

f l e c t i o n po in t s o n D is the same as the distance saB be tween oc a n d fi. 

T h e f o l l o w i n g t h e o r e m is a genera l iza t ion o f these s ta tements . 

T H E O R E M 2.4. L e t fi be an essential r e f l ec t ion p o i n t o f oc and let 

C be a cycle be long ing t o the n e t w o r k (oc, fi) and c o n t a i n i n g oc a n d fi. 
(The existence o f such a cycle fol lows f r o m the d e f i n i t i o n o f a n essential 

r e f l ec t ion p o i n t . ) 

I f C is n o t a basic cycle, t h e n i t conta ins t w o pa ths va ( w i t h end 

p o i n t s oc', oc" a n d c o n t a i n i n g oc), vB ( w i t h end po in t s fi', fi" a n d con

t a i n i n g fi) possessing the fo l l owing proper t ies : 

1° L(va) = - W - M*>B) = 8fit" • 
2° L(vJ = L(vB). 
3° I f a 6 va, the re exists a fi €vB such t h a t fi € Tx(x) and 

*5J = *<*/> = i L ( C ) • 
4° The end p o i n t s o f and vg are essential r e f l e c t i o n po in ts o f 

some j u n c t i o n po in t s on C. 

P R O O F . T h e p o i n t s cx a n d fi d i v i d e 0 i n t o t w o pa th s v' a n d v" 
b o t h o f w h i c h are (a, /?)-paths. Since, b y assumpt ion , G is n o t a basic 

cycle , i t contains a t least one pa i r o f j u n c t i o n po in t s g', e" t h e shortest 

pa th s between w h i c h have no po in t s i n c o m m o n w i t h G except t he i r 

end po in t s . Th i s is clear f r o m the r e m a r k made i n connec t ion w i t h the 

d e f i n i t i o n o f a basic cycle . L e t u be one o f t he (e', e")-paths. 
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Fig.32.4 

B o t h o f t h e p o i n t s s', e" c a n n o t be o n v', since v' is a n (cx, fi)-

p a t h . F o r t h e same reason b o t h o f t h e m c a n n o t be o n v". T h e n le t us 

suppose t h a t E 6 v' a n d e" € v". L e t u' be t h e p a r t o f v' b o u n d e d 

b y oc a n d e' a n d l e t u" be t h e p a r t o f v" b o u n d e d b y oc a n d e". 

Since u U f f i ' U u" is a cycle f o r m e d b y t h e shortest p a t h s between t h e 

p o i n t s oc, e , e", i t c a n be seen t h a t A(u, u', u") is a p a t h t r i a n g l e . B y 

a p p l y i n g T h e o r e m 2.2, w e f i n d t h a t e" has o n u' a r e f l e c t i o n p o i n t oc' 

f u l f i l l i n g e' € (E" , oc'). I f there are several such r e f l e c t i o n p o i n t s , we 

choose t h e one nearest t o oc f o r oc'. 

W e n o w consider a l l pairs o f p o i n t s s', e" for w h i c h t h e prev ious 

considerat ions are v a l i d a n d p i c k t h e p a i r o f p o i n t s e , e" t h a t gives t h e 

\' nearest t o oc. W e are g o i n g t o s h o w t h a t oc' is t h e n a n essential 

r e f l e c t i o n p o i n t o f s". D e n o t e b y u'a t h e p a r t o f v' b o u n d e d b y oc a n d 

\'. Let 3 be a n i n n e r p o i n t o f u'a (i .e. oc ^ oc, oc'). W e w i l l n o w p r o v e 

t h a t * ' « 
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I n d e e d , suppose t h a t oc' € (s", a ) a n d hence also «' € (e", 5 ) , as a 

consequence o f e'E (e",cx'). T h e p a t h s u",v'C\ (« ,«) , a n d « U ( 0 ' f l (e, bX)) 

w o u l d t h e n f o r m a p a t h t r i a n g l e w i t h vert ices e", oc, oc. Hence , b y 

T h e o r e m 2.2, e" w o u l d have o n v', b e t w e e n t h e p o i n t s oc, cx, a reflec

t i o n p o i n t y f o r w h i c h oc € (e", y ) a n d hence also e' € (s", y ) , since 

e' € (e", oc). T h i s , h o w e v e r , c o n t r a d i c t s o u r a s s u m p t i o n t h a t v' D ( a , oc) 

does n o t c o n t a i n a n y r e f l e c t i o n p o i n t y o f e" s a t i s f y i n g e £ (e", 7). 

T h u s i t has been p r o v e d t h a t oc' € (E" , a ) . 

W e shal l n o w p r o v e t h a t oc £ (e", oc). T h e p r o o f is i n d i r e c t . Suppose 

t h a t oc € (e", oc). L e t v be a n (e", <x)-path. Since, b y a s s u m p t i o n , 

oc € (E", ix) a n d , b y t h e p r e v i o u s a r g u m e n t , oc' € (e", oc), t h e r e w o u l d have 

t o e x i s t o n v', b e t w e e n oc' a n d oc, a j u n c t i o n p o i n t e i n w h i c h v 

takes o f f f r o m v'. Since e" € v", t h e r e m u s t be a n o t h e r j u n c t i o n p o i n t 

s" € 0 " i n w h i c h i> j o i n s v". 

L e t M be t h e p a r t o f v b o u n d e d b y t h e p o i n t s e a n d e". W e m a y 

assume t h a t u has n o p o i n t s i n c o m m o n w i t h C e x c e p t e' a n d e". 

Since n o w A(il, v' f l (e', oc), v" f l (i", oc)) i s a p a t h t r i a n g l e w i t h vertices 

oc, E , E " , t h e v e r t e x e" w o u l d t h e n h a v e , b y T h e o r e m 2.2, o n v' between 

E a n d oc a r e f l e c t i o n p o i n t y for w h i c h e' € (e", y ) . B u t t h i s c o n t r a d i c t s 

o u r a s s u m p t i o n t h a t oc is, o f a l l p o i n t s o f t h i s t y p e , t h e one nearest 

t o oc. 

H e n c e i t has been p r o v e d t h a t oc £ (e", <x) for e v e r y i n n e r p o i n t oc 

o f u'a; b u t t h e n also oc € (E", OC'), because oc' is a n e n d p o i n t o f u^. 

Since E' € (e", oc') a n d oc € (e", oc'), t h e cycle u U u' U belongs 

t o t h e n e t w o r k (e", «') a n d i t has been s h o w n t h a t oc £ T x ( E " ) . 

N e x t we consider a n a r b i t r a r y i n n e r p o i n t 5c o f u'^ a n d denote b y 

~&~ t h a t p o i n t o n v" f o r w h i c h = sa-. W e w i s h t o p r o v e t h a t 

C c (5, 

A g a i n , t h e p r o o f is i n d i r e c t . Assume t h a t C c [ l ( « , T h i s is t o say 

t h a t oc € ( « , J3). L e t u be one o f t h e (oc, ̂ ) -paths. Since oc £ (oc, fi), 

t h e r e m u s t be j u n c t i o n p o i n t s e' € v' a n d E" £ v" i n w h i c h v takes o f f 

f r o m t h e cycle C a n d such t h a t v has n o p o i n t s i n c o m m o n w i t h C 

b e t w e e n s a n d e". 

I f oc £ (e', a ) , w e h a v e a p a t h t r i a n g l e w i t h vert ices oc, oc, i" a n d i f 

E £ (oc, oc), we h a v e a p a t h t r i a n g l e w i t h vert ices §', oc, e". I n b o t h cases 

i t is seen i m m e d i a t e l y , b y T h e o r e m 2.2, t h a t e" has o n v' between « 

a n d oc a r e f l e c t i o n p o i n t y f o r w h i c h i' € (e", y ) . T h i s c o n t r a d i c t s t h e 

a s s u m p t i o n s a b o u t e' a n d E". H e n c e C c (oc, fi). T h i s is also t o say 

t h a t 5-5 = I i ( C ) a n d ^ € TX(E). I f w e l e t S a p p r o a c h oc', t h e n ^ w i l l 

2 
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approach a point 8" for which, by continuity, the relations 8" € Tx(oc'), 

sgg* = saix., C c (cx', 8") w i l l st i l l hold. The point 8" is an essential 
reflection point of e'. I n fact, since oc' € Tx(e") and C C (oc', 6"), we 
have 

i L(C) = « a V + *,v + «.r 

or 

which implies that there exists a cycle belonging to (s', 8") and con
taining e and 8" . Thus 8" € T^e'). 

A similar argument can be carried out for v" as has now been per
formed for v'. As a result we f ind points oc" € v", 8' 6 v', and a path 
u"^ C v", w i t h properties similar to those of oc', 8", and u'a, respectively. 
I f we denote va = u'a U u"a and define vg i n a similar manner, the 
assertions 1 ° — 4 ° of Theorem 2.4 can be easily verified: 

1° follows for va from C C (oc', 8"). 
2° is true, since i t has been shown that saa. = sgg., and similarly, 

soax" = sfig' • 
3° has been proved above for 
4 ° has been proved above for 8". 
R E M A R K 1. The paths va, vg may occasionally reduce to the points 

cx,8. 

R E M A R K 2. I f C is a basic cycle, we may take va = vg = G; asser
tions 2° and 3° are then valid also i n this case. 

2.5. Reflection sets 

We shall generalize the reflection point concept extending i t so as 
to apply to the subnetworks of A . Let B be an arbitrary subnetwork. 
The reflection -set T(B) of B is defined as 

T(B) = U T(oc) . 
l 6 B 

The e s s e n t i a l and unessential reflection sets are defined i n a similar 
manner by 
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TX(B) = U , 

T2(B) = U T2(cx) 

and hence 
T(B) = TX(B) U T2(B) . 

I f B consists of a single point, the sets TX(B) and T2(B) have no 
points i n common. I f B is a non-degenerate subnetwork, this need not 
be so. Those cases i n which 

(2.2) TX(B) n T2(B) = 0 , 

offer a particular interest. We say that B is completely reflective, i f i t 
satisfies (2.2). 

The nature of a completely reflective subnetwork is illustrated i n 
Fig . 2.5; the subnetwork (path) v is completely reflective whereas v' 
is not. The fact tha t v' is not completely reflective is due to the degenera
t i n g of one of the components of Tx(v'). Certain reflection points of the 
points between ocx and oc2 coincide i n the single point y which is an 
unessential reflection point of all of them. Since, however, y € Tx(ocx), 

we have Tx(v') fl T2(v') = y ^ 0 . 

V V 
1 I ~ ~ ~ ~ 1 * ' 

I 1 2\ . 1 

Fig. 2.5 

I n this example the unessential reflection set was empty or consisted 
of a single point. As a matter of fact, T2(B) is always a f inite set since, 
according to Theorem 2.3, T2(B) consists of reflection points of junct ion 
points. 

We shall now study under what conditions a path i n A is completely 
reflective. 
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T H E O R E M 2 .5 . A path v € A that does not (even as end points) 
contain junction points, or reflection points of junct ion points, is com
pletely reflective. Tx(v) then consists of a finite number of paths al l 
having the same length L(v) but no common points. 

PROOF. B y assumption, v is part of an edge. To prove the first part 
of the theorem, let us first suppose tha t no point of v has any essential 
reflection points. Since Tx(v) = 0 and therefore also Tx(v) ("I T2(v) = 0 , 
i t is seen that v is completely reflective. We then suppose that a point 
a € v has an essential reflection point fi. Using Theorem 2.4 i t can 
be verified that fi cannot be an unessential reflection point of any point 
of v. This proves tha t v is completely reflective. I n fact, we observe 
that since v does not contain junct ion points and reflection points of 
junct ion points, v is, by Theorem 2 .4 , 4 ° , a part of the path va defined 
in that theorem. 

Since fi € Tx(oc), fi cannot be a reflection point of a point & € v 
different from ex. This follows from Theorem 2 .4 , 3 ° according to which 
cx has an essential reflection point fi such that 8 € («, fi). I n order for 
8 to be a reflection point of cx , 3 would have to be a junction point, 
since i t is, by Lemma 2.1, the only common point of (cx, 3) and (8, fi). 
This is impossible, since a junction point fi would have a reflection point 
oc € v. Thus the first part of the theorem is proved. 

The second part follows directly from the previous considerations by 
which i t can be seen that Tt(v) consists of a finite number of paths, 
whose end points are the essential reflection points of the end points of 
v and each one of which has the length L(v). These paths, the components 
o f Tx(v), have no common points, since i f two of them had a common 
point, i t would mean that such a common point would have at least two 
different reflection points on v, which is impossible (cf. 2 . 2 ) . 

A direct consequence of Theorem 2.5 is 
COROLLARY 2.5 .1 . For a path v € A which does not contain junct ion 

points, or reflection points of junct ion points as inner points, T(v) 
consists of a f inite number of distinct points and paths al l having the 
same length L(v) bu t no common inner points. 

The general solution of our main problem, viz., the determination 
of the distance distribution, is based on this corollary. A path v to 
which Corollary 2.5 .1 applies may be called completely reflective i n a 
wide sense. 
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2.6. Nonsingular networks 

A network A is nonsingular, i f the relative degree nBtx (cf. 2.1 ) is 
at most 2 for al l points oc, fi i n A . Networks appearing i n practice 
are usually nonsingular, since the condition nBoL > 3 requires that 
there be at least three paths of equal length between oc and fi. 

Probably the most important class of nonsingular networks consists 
of those in which the shortest path between any two junct ion points is 
unique. 

2.7. The function na(s) 

Let oc be an arbitrary fixed point i n A. We introduce the non-
negative, integer-valued function defined by 

na(s) = number of points fi 6 A for which saS = s. 

This function is always bounded, since no edge can contain more than 
two points at a given distance s from oc. We now t r y to f ind an explicit 
expression for na(s). 

The jump (if any) of na(s) at a certain distance s is bui l t up of the 
»component jumps» contributed by al l points fi for which saB = s. 
The jump contributed by such a point is 

tip — 2 nBa = 5 — 4 = 1 

Fig. 2.6 

This expression can be different from zero only i f fi belongs either to 
T(cx), the set of the reflection points of oc, or to E == {e 1 ; e,2, . . . , em } , 
the set of the special points of A. Thus na(s) has only a finite number 
of discontinuities and these can occur only at the points 
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5 = 0 , 
( 2 . 3 ) 

5 = 5 A / 3 , 8eT(cx)\JE. 

B e t w e e n t w o p o i n t s o f d i s c o n t i n u i t y na(s) is cons tan t . T h u s njs) is a 
non-nega t ive , in teger -va lued step f u n c t i o n . 

T h e d e f i n i t i o n o f na(s) is ambiguous for the values ( 2 . 3 ) . W e a m e n d 
t h e d e f i n i t i o n b y t a k i n g t he l i m i t o n t he r i g h t as t h e v a l u e o f na{s) a t 
t h e po in t s ( 2 . 3 ) . 

I n order t o es tabl i sh a f o r m u l a fo r njs), we i n t r o d u c e t he a u x l i a r y 
f u n c t i o n 

| 1 , i f x > 0 
(p(x) = \ 

[ 0 , i f x < 0 . 

Obse rv ing t h a t na(0) = nx a n d n a a = 1, b y t he d e f i n i t i o n i n 2.1, we 
t h e n o b t a i n 

( 2 . 4 ) nx(s) = 2 9 ,(5) + 2 (»* - 2 V ) <P(S ~ > 
fi 

where t he s u m is t a k e n over a l l 8 € T(cx) U E . I n fac t , i n a l l o ther p o i n t s 
t h e t e rms o f t he s u m van i sh . 

W e m a y m o d i f y ( 2 . 4 ) a l i t t l e u s ing t he i d e n t i t y 

n B - 2 % = (nB - 2 ) - 2 ( » ^ - 1) 

a n d s p l i t t i n g u p ( 2 . 4 ) co r responding ly i n t o 

» a ( « ) = 2 9 ,(5) + 2 ( n , - 2 ) 9,(5 - « ) - 2 £ ( » „ * - 1) <p(s - , 
I ? 

where /8 e T(«) as before. H o w e v e r , since n0 — 2 = 0, i f 8 $ E, 
a n d ra^ — 1 = 0 , i f 8 £ T(oc), we have 

(2.6) » a(«) = 2 9 , ( 5 ) + £ K f c - 2 ) 9 , ( 5 - « ) - 2 2 ( » * - 1 ) 9 > ( « - V ) • 

k=l /?6T(a) 

2.8. The number of reflection points 

W e a p p l y (2.5) t o evaluate t he n u m b e r o f r e f l e c t i o n po in t s o f ex. 
A c c o r d i n g t o t he de f in i t ions o f a n e t w o r k a n d o f na(s), t he f u n c t i o n 

fta(«) vanishes, w h e n 5 becomes large enough. M o r e precisely, we k n o w 

t h a t na(s) = 0 , i f 8 > S a = m a x safi, where 8 € T ( « ) U E. I f 5 > 4, 

w c have 9>(.s 5 A = 1 for a l l 8. a n d thus 
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m0 

0 = 2 + 2 K - 2 ) - 2 2 ( » /* - 1) • 
k=l /J6T(a) 

Hence, b y (1.2), 

(2.6) 2 (»/** = 1 + * 2 K - 2 ) = m • 

T h i s proves 

T H E O R E M 2.7. I n a nons ingula r n e t w o r k the n u m b e r o f r e f l ec t ion 

p o i n t s o f a n y p o i n t equals the cye loma t i c n u m b e r m o f the n e t w o r k . 

Th i s theorem can be f o r m a l l y e x t e n d e d so as t o a p p l y t o a l l n e t w o r k s 

b y i n t e r p r e t i n g ngol — 1 as the order o f t he re f l ec t ion p o i n t 8; one m a y 

i m a g i n e t h a t n g a — 1 d i s t inc t , a n d s imple , r e f l ec t ion po in t s have merged 

i n t o one. 

3 . E X T R E M E POINTS 

3 .1. Definition 

Concep tua l ly closely re la ted t o t h e re f lec t ion p o i n t s are t he extreme 

points w h i c h are d e f i n e d as fol lows: 

L e t Bx a n d B2 be subne tworks o f A. W e say t h a t a p o i n t 82 

be long ing t o B2 is a n ex t reme p o i n t o f Bx on B2 i f f o r some p o i n t /32 

be long ing t o Bx 

se& = S U P 8OL1CL, • 

Conversely, Bx is t h e n also an e x t r e m e p o i n t o f B2 o n B v 

The set o f t h e ex t reme poin ts o f Bx o n B2 is deno ted b y A(Bx, B2) 
a n d the ex t reme dis tance b y s(Bv B2). F o r ins tance, i n the net

w o r k shown i n F i g . 3.1 and cons is t ing o f the basic cycles Dx a n d D2, 
we have A{DX, D2) = (82, 8'2), A(D2, Dx) = (Bx, B[) a n d s(Dv D2) 

T h e f o l l o w i n g t h e o r e m i l lus t ra tes t h e na tu re o f t h e ex t reme po in t s 

a n d shows t h e i r r e la t ionsh ip t o t he r e f l ec t i on po in t s . 
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p

< 

Fig. 3.1 

T H E O R E M 3.1. Let cx be an arbitrary point i n A and let B be a 

subnetwork of A. Then A(x, B) consists of distinct points i n B each 
of which is either an end point of B or a reflection point of x. 

R E M A R K . I f B has no end points, then A(x, B) c T(oc). 
P R O O F . Let fi be an extreme point of a on B. We make the assump

t ion that 8 is neither an end point of B nor a reflection point of x, 
and show that this leads to a contradiction to the assumption that fi 
is an extreme point. 

According to the antithesis, we have ng > 2 i n B and nga = 1. 
This is to say that there is at least one edge or part of an edge of A i n 
B, say v, starting from 8 but not belonging to any (x, /S)-path. We 
denote by y the other end point of v. Since v (§Z (oc, fi), we have 

(3-1) s a g < s a y + L(v). 

From any inner point 6 of v, the shortest path to x must pass through 
y, since otherwise sa6 > sag, against the extreme point property of 8. 
Thus sag>say + 8yi, which contradicts (3.1) when d is close enough 
to fi. 

3.2. Extreme points on basic cycles 

We shall now study the extreme points on basic cycles more closely. 
In 2.4 we defined a basic cycle as a cycle D which satisfies the following 
oondition: to any two points x, 8 of B there is an (x, /?)-path which 
belongs to />. 
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We first consider the case that Bx is a point x whereas B2 is a 
basic cycle D. According to Theorem 3.1, A(x, D) always consists 
of reflection points of x on D; i n fact we shall prove more: 

T H E O R E M 3.2. I f p is a reflection point of oc, then there exists a 
basic cycle D containing fi, and we have A(x, D) = fi (i.e. fi is the 
only extreme point of x on D). 

Fig. 3.2 

P R O O F . We first assume that fi € T^oc). B y the definition of an 
essential reflection point, there exists a cycle C belonging to («, fi) 
and containing x and fi. The points x, fi divide C in to two (x, fi) 
paths v', v". Let e' € v' and e" € v" be junction points and denote 

S

e a t ' — Se'a + 8ou' • 

We shall distinguish two cases. 
1° For all E e v', e" € v", the equation 

s.v = m i n ( « l W , « t > . ) 
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i 3 ' , r t 

Fig. 3.1 

T H E O R E M 3.1. Let oc be an arbitrary point i n A and let B be a 

subnetwork of ^4. Then A(cx, B) consists of distinct points i n B each 
of which is either an end point of B or a reflection point of oc. 

R E M A R K . I f B has no end points, then A(cx, B) c T(oc). 
P R O O F . Let 8 be an extreme point of oc on B. We make the assump

t ion that 8 is neither an end point of B nor a reflection point of oc, 
and show that this leads to a contradiction to the assumption tha t 6 
is an extreme point. 

According to the antithesis, we have ng > 2 i n B and nga = 1. 
This is to say tha t there is at least one edge or part of an edge of A i n 
B, say v, starting from 8 but not belonging to any (oc, /S)-path. We 
denote by y the other end point of v. Since v <3p (oc, 8), we have 

(3.1) sag< sar + L(v). 

From any inner point 6 of v, the shortest path to oc must pass through 
y, since otherwise saS > sag, against the extreme point property of 8. 
Thus sag > say - f sr( i, which contradicts (3.1) when d is close enough 
to 6. 

3.2. Extreme points on basic cycles 

We shall now study the extreme points on basic cycles more closely. 
In 2.4 we defined a basic cycle as a cycle D which satisfies the following 
condition: to any two points oc, 8 of D there is an (oc, /?)-path which 
belongs to I). 
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We first consider the case that Bx is a point oc whereas B2 is a 
basic cycle D. According to Theorem 3.1, A(oc, D) always consists 
of reject ion points of oc on D; i n fact we shall prove more: 

T H E O R E M 3.2. I f 8 is a reflection point of cx, then there exists a 
basic cycle D containing 8, and we have A(oc, D) = 8 (i.e. 8 is the 
only extreme point of oc on D). 

Fig. 3.2 

P R O O F . We first assume that 8 € Tx(oc). B y the definition of an 
essential reflection point, there exists a cycle C belonging to (oc, 6) 
and containing oc and 8. The points oc, 8 divide C into two (cx, 8) 
paths v". Let e' 6 v' and e" € v" be junction points and denote 

= 8,'fi + 8fit' ' 

We shall distinguish two cases. 
1° For all e € e" € v", the equation 

= min 
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is valid. Then, by the definition of a basic cycle, C is the basic cycle 
whose existence is asserted in the theorem. 

2° There exists a pair of junction points e € v', e" € v" for which 

« , v < min (s^. , . 

I f there are several pairs of points fulfilling this relation we shall examine 
the pair of points e', e" for which S E V + se,Se. is minimum. This pair 
can be chosen so that none of the (e , e")-paths has any common points 
with C except the end points e',e". Let vs be one of the (e', e")-paths. 
I f vr is the part of v' bounded by 8 and e' and v" is the part of v" 
bounded by 8 and s", i t can be shown that the cycle 

C(e', 8, s") = Cc = v£U v'f U < 
is a basic cycle. 

I n fact, i t can easily be seen that if two points of Cr could be con
nected by a shorter path than those belonging to Ct, there would be 
a new pair of junction points e' € v', s" € v" and a cycle G(e', 8, s") 
the length of which would be less than 

L{CE) = s,t. + t ^ . . 

This, however, would contradict our assumptions on e' and e". Hence 
Cc is a basic cycle. 

To prove that Cc can be chosen for D, i t remains to be shown that 
A(cx,Ce) = p, i.e. that say < safj for every y € Cc, y + 6. This is 
self-evident i f y € ^ U » ' , since v't U v" C (oc, fi). I f y € vc, then we 
have 

Socy < \ + V + *,'«*) 

< \ + *a £' + «*>,•) = ftgf > 
since «,,,. < . 

We have hitherto supposed that 5 € ^ ( a ) and verified the theorem 
in this case. The case 8 € T2(oc) can be reduced to the previous one, 
since, by Theorem 2.3, there exists a junction point y € (oc, 8) for which 
P £ T,(y). 

REMARK. I f the order nBa — 1 of the reflection point p is higher 
than 1, one can see, by inspecting the foregoing proof, that there exist 

at least I ^ a I > nBtx — 1 different cycles like C and hence it can be 
\ * I (n \ 

concluded that there are at least I | a | basic cycles to which the theorem 
applies. ^ ' 
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The following corollaries are immediate consequences of Theorem 3.2. 
COROLLARY 3.2.1. I f oc and fi are reflection points of each other, 

then there exist basic cycles D' and D" such that oc € A(D", D'), 
fi € A(D', D"). 

Let r be the number of basic cycles in A and let the basic cycles 
be denoted by Dv D2 , . . . , Dr. 

COROLLARY 3.2.2. The cyelomatic number of A is at most equal to 
the number of basic cycles, i.e., m <r. If A is singular, then m < r. 

This is true for nonsingular networks, according to Theorem 2.7. 
From the remark made after the proof of Theorem 3.2 and from (2.6) 
it follows that m < r for singular networks. 

3.3. Tornqvist networks 

Networks for which r = m will be called Tornqvist networks. By 
Corollary 3.2.2, all Tornqvist networks are nonsingular. I n practice, 
planar networks are usually Tornqvist networks since, as remarked in 
1.3 (Euler's formula), the cyelomatic number m equals the number of 
the faces of the planar network, and the faces are usually the only basic 
cycles. 

A simple example of a network which is not a Tornqvist network is 
that formed by the edges of a cube. Here r = 6, but 

TO = 12 — 8 + 1 = 5 . 

By Theorem 3.2 and Corollary 3.2.2, we have the following corollary 
on Tornqvist networks. 

COROLLARY 3.2.3. I n a Tornqvist network every point has precisely 
one extreme point on each basic cycle. The extreme points oa of oc on 
the basic cycles Z),-, i = 1, 2, . . . , TO are all different and identical 
with the reflection points of oc. 

We shall make use of the shorter notation 

Aij = A(Di, Dj) , i , j = l , 2, . . . , r 
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for the set of extreme points of Di on Dj. Hence, by the definit ion o f 
a basic cycle, we have 

An = Di, i = 1, 2, . . . , r . 

Correspondingly we denote 

sxi = s(oc, Dt) , i = 1, 2 , . . . , r , 

Sij = s(Z>i, Z>;) , » , j = 1, 2, . . . , r , 

<ty = L(Aij) , i , j = 1, 2, . . . , r . 

Let us study the structure of the sets Aij more closely. First con
sider a path v which does not contain junction points, or reflection points 
of junct ion points, as inner points; i n particular, we shall examine the 
extreme points of » on a basic cycle D. 

Let oc € v have as an extreme point on D a point 8 which, according 
to Theorem 3.1, is also a reflection point of oc. I f B 6 T2(oc) for all 
v € v, then A(v, D) consists of a finite number of distinct points on D 
all of which are reflection points of junction points. This follows from 
Theorem 2.3. 

On the other hand, i f for some oc € v we have B € Tx(oc), i t is seen 
directly from Theorem 2.4 that A(D, v) = v and A(v, D) c T-^v). 
The set A(v, D) then consists of one or more paths each of which has 
the same length L(v), according to Corollary 2.5.1. I n particular, i f 
A is a Tdrnqvist network, then, according to Corollary 3.2.3, A(v, D) 
consists of a single component, and L(A(D, v)) = L(A(v, D)) = L(v). 

Since we may now suppose tha t Dt consists of paths Vh, h = 1, 2, . . . , p 
none of which contains junct ion points, or reflection points of junct ion 
points, as inner points, i t follows that 

at/ = max s(vh , Dj) ; 
h 

11< nec we have arrived at the following theorem: 

T H E O R E M 3.3. The set Atj consists of a f ini te number of paths 
and distinct points on Dj. HA is a Tornqvist network, then a,-; = aty. 

Usually Ay is a proper subset of Dj. There are, however, cases in 
which = Dj. For instance, i n the network formed by the edges o f 
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a cube we actually have the situation A^ = Dj for the opposite faces 
of the cube. This case is never possible i n Tornqvist networks, as stated 
in the following theorem: 

T H E O R E M 3.4. I n a Tornqvist network A the set A^ is always 
a proper subset of Dj when i # j . 

P R O O F . Let us suppose, to the contrary, that the Tornqvist network 
A contains two basic cycles Di, Dj such that Aij = DJ; i t w i l l be 
shown that this leads to a contradiction. I t is f irst verified that for al l 
points oc, p on Dj we have 8ai = sa» where oa and 8i are the 
extreme points of a and B on Di. I t may be noted that oct and /?; 
are unique, by Corollary 3.2.3. 

Next, let E be the set of all special points i n A, and consider the 
set Ej = Dj f l (E U T ( E ) ) . This set consists of a finite number, say 
p, of points. We denote these points by yv y% , . . . , y . I t is assumed 
that yh and yh+l (h = . . . ,p, yp^l=y1) are consecutive points 
on Dj. 

Let oc be an inner point of the path (yh, yh+x) D Dj and let oct be 
the extreme point of oc on Di. Conversely, since by the antithesis 
Atj = Dp and therefore saa. — sij, oc is seen to be the extreme point 
of oa on Dj and thus oc € T(LM), by Theorem 3.1. From this we deduce 
that * € since i f a € T2(ai), we would, by Theorem 2.3. have 
t \ € T(E), which is impossible according to the definition of Ej. Thus 
oc € TiltXj) and from Theorem 2.4, 3° i t follows tha t saa = sa.g. when 
both of the points oc, B are on the same path (yh, yh+1) H Dj. Let the 
extreme point of yh on Dt be v*;. Then also s , , = sVL.vl , .. 

yhih 4 - 1 Yhiih-\-1, t 

The paths (yhi, yk+ifi) 0 Dt, h = 1, 2, . . . , p can meet only i n 
the points yu, h = 1, 2, . . . , p , since i f d =£ yhi, h = 1,2, . . . ,p 
Avere a common point of two or more such paths, then the extreme 
point dj of 5 on Dj would not be unique, and this would contradict 
Corollary 3.2.3. We thus conclude that the points yu> y 2 J , . . . 
follow each other i n this order along Di, and that 

Aji = Dt n U (y«»n+i,i) = A 

S i n c e s r*n+i = Srkirk+ij , h = 1, 2, . . . , p, we have = 3 ^ . 
h, g = 1, 2, . . . , p and finally = sa.g., oc E Dj, B € D-, since Dt 

is a basic cycle. 
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W e sha l l n o w prove t h a t A and A canno t have any p o i n t s i n 

c o m m o n . I n d e e d , i f * were such a c o m m o n p o i n t a n d <x, the e x t r e m e 

p o i n t o f oc o n A, i t w o u l d f o l l o w t h a t s a a . = sai = su = 8tj, since 

oc € A^. T h i s w o u l d mean t h a t oc is an ex t r eme p o i n t o f oa b o t h o n 

Di and Dj, w h i c h again con t rad ic t s Coro l la ry 3.2.3. 

L e t us consider an a r b i t r a r y p o i n t oc € Di a n d i t s ex t reme p o i n t 

XJ on Dj. L e t v be an (oc, « , ) - p a t h . Since A a n d A cannot have 

any po in ts i n c o m m o n , there exis ts a j u n c t i o n p o i n t y € A, i n w h i c h 

v takes o f f f r o m A- T h e p a t h v t h e n has no p o i n t s except y i n c o m 

mon w i t h A be tween y a n d ocj. Since i t has been s h o w n t h a t Aj{ = A, 

i.e.. s = * = sf, and say = sx.r., there m u s t ex is t a (y, y , ) - p a t h 

r' passing t h r o u g h ocj. I t fo l lows t h a t v a n d v' coincide be tween y 
and \j. Hence v' and A have no c o m m o n p o i n t s except the j u n c t i o n 

poin t y. Becauss y is the e x t r e m e p o i n t o f yj o n A, we m u s t have 

H ; 3. H o w e v e r , since a T o r n q v i s t n e t w o r k is a lways nons ingula r , 

t h i s is impossible . Thus the a s sumpt ion Aij = Dj is false. 
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4. T H E DISTANCE DISTRIBUTION 

3] 

4.1. Formulation of the problem 

The dis tance d i s t r i b u t i o n i n a n e t w o r k can be inves t iga ted s t a r t i n g 
f r o m d i f fe ren t basic assumptions . One n a t u r a l s t a r t i n g p o i n t is as fo l l ows . 

I n a n e t w o r k A we choose t w o poin ts oc a n d 3 a t r a n d o m i n d e 
penden t ly o f each other . T h e expression 'a t r a n d o m ' means t h a t t h e 
p r o b a b i l i t y o f choosing oc ( and l ikewise 3) f r o m a n a r b i t r a r y subnet 
w o r k B o f A equals a~lL(B). I n o ther words , w e assume the r a n d o m 
poin ts oc a n d 3 t o be u n i f o r m l y a n d i n d e p e n d e n t l y d i s t r i b u t e d over A. 
The distance be tween oc a n d 3 w i l l t h e n be a r a n d o m var iab le h a v i n g 
a cer ta in d i s t r i b u t i o n depending o n l y on A. Our ob j ec t ive is t o d e t e r m i n e 
th i s d i s t r i b u t i o n . 

W e shal l use the no ta t ions f(s) a n d F(s) for t h e dens i ty a n d d i s t r i 
b u t i o n f u n c t i o n , respect ively , o f the r a n d o m v a r i a b l e sxS. S i m i l a r l y , 

fa(s) and Fa(s) w i l l denote t h e cond i t i ona l d e n s i t y and d i s t r i b u t i o n 
funct ions , g i v e n x. 

4.2. The functions La(s) , Fa(s) , fa(s) 

The po in t s 3 whose dis tance f r o m a f i x e d p o i n t x is less t h a n s 
cons t i tu te a s u b n e t w o r k o f A t h e l eng th o f w h i c h w i l l be deno ted b y 
La(s), i.e., 

La(a) = L{3\ < s}. 

Obvious ly , t he c o n d i t i o n a l d i s t r i b u t i o n f u n c t i o n Fa(s) is 

FJa) = P{safi < s \ x } = a-*LA(8) . 

L e t us g ive t o s a pos i t ive i n c r e m e n t As a n d f o r m the cor responding 
inc rement o f LJs). B y the d e f i n i t i o n o f na(s) we have , for a s u f f i c i e n t l y 
smal l As, 

Lx(s + As) - LJs) = L{3\ s < s a f l < s + As} = n a ( « ) As . 

Hence the f u n c t i o n Lx(s) is con t inuous on t h e r i g h t and possesses a 
r i g h t hand d e r i v a t i v e w a (s) a t e v e r y p o i n t s. 
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I n a similar manner i t can be shown that La(s) is also continuous 
on the left and has the left hand derivative nx(s) at every point s except 
at some of the points (2.3). 

Since Fa(s) is up to a constant factor a" 1 identical wi th La(s), i t 
follows that Fa(s) is continuous at every point s and has the derivative 
a _ 1 w a (s) for every value of s except for some of the values (2.3). The 
conditional density function fa(s) can therefore be wri t ten in the form 

(4.1) Us) = a^na(s) . 

4.3. The density function f(s) 

The distribution function F(s) of the random variable sa3 can be 
writ ten as the expected value 

F(s) = EFa(s) . 
OC 

The corresponding density function f(s) is then by (4.1) 

/(«) = Efa{s) = a-iEna{8) . 
oc cc 

Observe that differentiation under E is permitted i n this case (cf. 
a 

CRAMER [2], p. 6 7 ) . Using the expression (2.5) for njs) we f ind 

af(s) = 2?(«) + X (nsk - 2) Ecp(s - a ) 

- 2 ^ 2 (ne« ~ X) <P(S ~ • 
a B€T(a) 

Observing that, for any fixed 6 and random a, 
Fg(s) = P{sag <s} = Ecp{s - 8^) 

we finally obtain 
mQ 

(4.2) af(s) = 2 V{8) + Z K ~ 2 ) F s k ( s ) ~ 2 e ( s ) 

where 

(1.2)' e(s) = E 2 ( » * - 1) - • 
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To make the expression of f(s) more explicit we need suitable for
mulas for Fa(s) and e(s). Fa(s) can be evaluated by integrating both 
sides of (4.1) and using again (2.5): 

s s 

(4.3) aFa(s) = a / fol(s)ds = / na(s) ds 

••"0 

== 2 s<p(s) + 2 (nek - 2) (s — sa £ f c) 99(5 

- 2 2 - .!).(* — W - • 

The construction of a suitable expression for e(s) is more difficult. F rom 
(4.2)' and (2.6) i t can be seen that e(s) is a monotonically increasing and 
non-negative function of s and that always e(s) < m. 

I n particular, i f A is a tree then e(s) = 0 for all s and we have 
simply 

a/(«) = 2 <?(*) + 2 K - 2) *V («) 

where F (s) is now 

Fek(a) = 2 a-W) + a" 1 2 ( » , -2) ( 8 - p(* - V J . 

4.4. Decomposition of £(s) 

We shall consider e(s) more closely only for Tornqvist networks. 
I n the rest of this chapter i t is thus supposed tha t the network A is 
a Tornqvist network, i.e., the cyelomatic number m equals the number 
r of basic cycles. I n Chapter 5 we shall return to the general case. 

Due to the nonsingularity of all Tornqvist networks, we always have 
npa ^~ 2> a n d (4.2)' can be wr i t ten as 

e(s) = E 2 9»(« - V • 

B y Corollary 3.2.3, we may simply sum over the basic cycles, thus ob
taining 

m m 

e(s) = E^cp{s - sj = 2 E<p(* ~ O 
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where sai (cf. 3 .3) is the distance from cx to its extreme point xt on Dt. 
I f we denote 

e,(«) = E<p(s — sai) , 

i t can be seen that e(s) has been decomposed into a sum of m terms: 

(4.4) e(s) = 2 e,(«). 
i = l 

We then consider a particular et(s) and write i t in to the form 

(4.5) et{s) = a-lLi(s) 

where 
Lt(s) = aE<p{s - sj . 

a 

Denote by A^s) the set of all points cx i n A for which sai < «. I t 
follows that 

from which we deduce that 

1 i f * € Ai(s) 

0 i f * € Ai(s) 

Uis) = L{At(s)} . 

Hence £;(«) is a function associated w i t h the basic cycle A i n the same 
way that the function La(s) was associated w i t h the point oc. 

4.5. The function n,(s) 

W i t h every basic cycle A we shall associate a function rii(s) ana
logous to the functions n a ( s ) that we have associated w i t h the single 
points ex. I f s has none of the values 

s = Sij , j = 1, 2 , . . . , m 
(4.6) 

we define n f(«) as the number of points oc for which sai = s. For the 
values (4.6) we define m(s) as the l i m i t on the r ight of the function 
previously defined. This is possible, since w;(s) is a step function w i t h 
possible discontinuities at the points (4.6). 
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We shall show that TO;(S) cannot have other discontinuities. Consider 
the jump of nt(s) caused by a point oc for which sai is not equal to 
any of the values e,j, j = 1, 2, . . . , m. Then w a a . (i.e., the relative 
degree of * w i t h respect to its extreme point cxi on A ) equals 1. 
Indeed, i f we had » > 1, then oc would be an extreme point of A 
on some basic cycle Dj, according to Corollaries 3.2.1 and 3 .2 .3 . I n this 
case 5 A I = stj, against our assumption about oc. 

Hence we conclude that the jump of n ^ s ) at <s = ŝ , caused by oc is 

( » « - w *a;) - n^. = n a - 2 . 

I n particular, i f sai is not equal to any of the values (4.6), the jump 
equals zero, since oc is then a line point. 

I t has been verified that the only possible discontinuities of «,(s) 
are at the points (4.6). On the other hand, since rii(s) is, by definition, 
integer-valued at all points except those of (4.6), and changes its value 
in these points only, i t is continuous and constant between any two 
consecutive points (4.6). Thus, n ^ s ) is a step function similar to n^s). 

We now consider the jump of n,(s) at s = s;y caused by the set 
A^. We recall that A^ is the set of points on Dj possessing the extreme 
distance «y to A-

riij = 3 , j ump = — 2 x 3 + 3 = — 3 . 

F i g . 4.1 
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Let us denote the complement set of Ay with respect to A by 
Ay. According to Theorem 3.3, the set Ay consists of a finite number 
of open paths on Dj. Let the number of connected components in Ay 
be ny. 
Since An = Dt, we have An = 0 and = 0, i = 1, 2, . . . , m. 
I f i + j , then Wy > 0, since Ay is in this case a proper subset of 
Dj, by Theorem 3.4. Hence, when i ny also indicates the number 
of components in Ay. 

Since for every point oc € Ay we have sRi < stj, the jump of 
at s = sy caused by Ay is — 2 ng plus the jumps caused 

by those junction points of A which belong to Ay. On account of 
the nonsingularity of A the jump caused by such a junction point cx 
is na — n = na — 2, and thus of the same form as the jumps caused 
by the other junction points, as stated above. 

As a result of these considerations we obtain for nt(s) the expression 

m0 m 

(4.7) n{{6) = 2 K - 2) - - 2 2 ^ - * • / ) 

for all values of 5 . 
By its definition, w;(s) vanishes when s becomes large enough. 

In a similar manner as in 2.8 we obtain the equation 

0 = X K - 2) - 2 J ny 

which by (2.2) is equivalent to 
m 

m — 1 = 2 % • 

I t has been established above that ny > 0 for all i, j — 1, 2, . . . , m, 
and My = 0 only i f i=j. Hence the last equation implies that ny = 1 
when i We thus have the following result which is stronger than 
Theorem 3.4. 

THEOREM 4.1. I n a Tornqvist network any set Ay with i j is 
either a path or a single point on Dj. 

11 is interesting to notice that i f A is not a Tornqvist network, the 
sets Ay actually may possess several components. For instance, in 
Pig. 1.2. the network consists of four basic cycles D1 = (cx', cx", 6", 8'), 
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A = (/?'> ft", y"> /)> A = (<*'> e", e', y'), A = (e"> e')> a n d w e 

have two components in A 1 2 and ^421. The network is not, however, of 
the Tornqvist type, since m = 3. 

4.6. The function Z.,(s) 

I n 4.4 i t has been shown that L{{s) admits the interpretation 

Lt(8) = L{At(s)} 

where 

Ms) — {*| « a i < s} • 

We consider the function £;(<s) for some value of s and give to s a 
positive increment As. I f Zls is small enough, Lt(s) will then, by the 
definition of nt(s) (cf. 4.5), increase by 

Lt(s + As) — £,-($) = L{cx\ s < sa ; < s + As} = nt(s) As . 

Hence Lf(s) has nt(s) for derivative on the right for all s. 
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I n a s im i l a r manner one m a y show t h a t IH(S) has also a l e f t h a n d 
d e r i v a t i v e equa l to nt(s) f o r a l l a except for some o f the values (4.6). 

W e observe t h a t Li(s) is cont inuous for a l l values o f a excep t 
a = S i j , j = 1, 2 , . . . , m a t w h i c h i t has a j u m p ciy = L(Ay). H e n c e 
Li(s) can be w r i t t e n i n t he f o r m 

s 

L{{s) = / rii(s) ds + ^ GiM3 ~ s'i) 
J / - I u 

w h i c h , b y (4.7) and T h e o r e m 4.1, is equ iva len t t o 

(4.8) LAs) = Z K ~ 2) (s - « . J <p(8 - s,ki) 
k= 1 

m m 

/ - i 

4.7. The density function / ( s ) in a Tornqvist network 

I n order t o f i n d an e x p l i c i t expression for t h e dens i ty f u n c t i o n f(s) 
o f 8aS, we have o n l y t o combine the results o f the prev ious sections. 
A c c o r d i n g t o (4.4) and (4.5), we have 

m 

e(s) = a - 1 X Ms) • 

Using t he general f o r m u l a (4.2) o f f(s), we t h e n o b t a i n 

(4.9) af(s) = 2 99(a) + £ K ~ 2 ) F ^ 8 ) ~ 2 ° _ 1 2 • 

The factor F (s) is o b t a i n e d f r o m (4.3) o n t a k i n g <% = efc a n d n o t i n g 

t h a t the u o n s i n g u l a r i t y o f t he n e t w o r k imp l i e s nBa = 2. T h u s 

aF,k(8) = 2 a^a ) + Y (», - 2) (« - 9>(* " 
h= 1 

m 

— 2 V (a - O op(a — O . 
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B y s u b s t i t u t i n g th i s and (4.8) i n t o the expression (4.9) o f / (a) w e o b t a i n 
the f i n a l f o r m u l a 

(4.10) aj(s) = [4 (TO - 1) a + 2 a] <p(s) 

+ ZZ K - 2 ) K - 2 ) (* - ^ - • „ > 
fc^=i / t = i 

- 4 Z 2 ] (*.» - 2 ) (• - - »*) 

m m 

+ 2 2] 2 <2 s - 2 '9v " ««) 9^ - 5y) 

- 4 2 ( s - s«) ̂  — *«) • 

T h e g r a p h o f / (a) consists o f f i n i t e l ine segments a n d i t has a t m o s t 

I ^ ) + 1 d i scon t inu i t i e s , located ( i f present) a t the po in t s s = 0 

and a = sy, i,j= 1 , 2 , . . . , m. 

4.8. Examples 

W e shal l a p p l y the p rev ious results to t w o e lementa ry cases. 
1° W e f i r s t consider a n e t w o r k consis t ing o f a single edge v. L e t 

the end p o i n t s o f v be ex a n d e2. Since v is a tree, e(s) vanishes 
i d e n t i c a l l y a n d we have 

2 

af(s) = 2 <p(s) - Y F (8) 

where 

aFsk(s) = 2 8<p(s) — s<p(s) — (a — a) <p(s — a) , fe = 1, 2. 

Hence 

/ ( a ) = 2 a - 2 ( a — a) [99(a) - (p{s — a)] . 
I t can be seen t h a t / ( a ) decreases l inea r ly f r o m 2 a - 1 t o 0 i n the i n t e r v a l 
(0, a). E lsewhere / ( a ) vanishes. The expec ted va lue o f the d is tance 

a 
between t w o r a n d o m po in t s is — . 
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2° A s a second example l e t us consider a single cycle A = Dr I n 
t h i s case 

af(s) = 2 <p(s) - 2 a-i-L^s) 

where 

= 1299 (s 

a n d f i n a l l y 

f(s) = 2 a-1 <p{s) — 9?Is -

2 / ' 

a 

a 
T h e dis tance is u n i f o r m l y d i s t r i b u t e d over t he i n t e r v a l 0 , — 

5. G E N E R A L I Z A T I O N AND P R A C T I C A L SOLUTION 

5.1. Generalization of the problem 

I n Chapte r 4 we w o r k e d o u t an expression for the d i s t r i b u t i o n o f t he 
distance be tween t w o independen t ly chosen r a n d o m po in t s i n a T o r n q v i s t 
n e t w o r k . T h e u n i f o r m d i s t r i b u t i o n o f these p o i n t s was a basic assump
t i o n , as s t a t ed i n 4.1. 

The so lu t ion presented can be app l i ed i n prac t ice w i t h o u t a n y d i f f i 
c u l t y . I t is, however, a d r a w b a c k t h a t t he s o l u t i o n is appl icable o n l y t o 
ne tworks o f a cer ta in t y p e , namely , t o T o r n q v i s t ne tworks . A l s o , the 
a s sumpt ion abou t the u n i f o r m d i s t r i b u t i o n o f t h e r a n d o m p o i n t s ove r the 
whole n e t w o r k is i n m o s t cases unreal is t ic . 

F o r these reasons we have developed ano the r m e t h o d , based o n more 
general assumptions a n d sui table for a l l n e t w o r k s . T h e general m e t h o d 
cannot , o f course, be as economic i n c o m p u t a t i o n s as t h a t presented i n 
Chapter 4, b u t i t s larger a p p l i c a b i l i t y can be considered a decisive 
advantage . 

T h e generalized f o r m u l a t i o n o f the p r o b l e m is as fo l lows. 
O u r a i m is s t i l l t o s t u d y the distance sag be tween t w o i n d e p e n d e n t l y 

chosen random points \ . 3 i n a n e t w o r k A. Howeve r . \ w i l l n o w be 
in t e rp re t ed as a source sending t r a f f i c w i t h a c e r t a in intensity, whereas 3 
is i n t e rp re t ed as a sink s i m i l a r l y receiving t r a f f i c . I n a precise f o r m ou r 
assumpt ions are: 
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T h e n e t w o r k A is p a r t i t i o n e d i n t o s u b n e t w o r k s Ax, A2, . . . , Ak. 
( I n t he p a r t i t i o n t he p o i n t s o f d i v i s i o n are considered as b e l o n g i n g t o 
a l l ad jacent subnetworks . ) T h e p r o b a b i l i t y o f choosing t he source oc 
f r o m w i t h i n At is 

P{oc € At} = pi, i = 1, 2, . . . , k 

and the p r o b a b i l i t y o f choosing the s ink 8 f r o m w i t h i n Aj is 

P{3eAj} = qj, j = 1,2, 

The choices o f the source a n d the s ink are independent , i.e., 

P{cxeAi,8eAj} = piqj, i ,j =*= 1, 2, . . . , * . 

Ins ide t h e subne tworks t h e d i s t r i b u t i o n o f t h e r a n d o m poin ts is u n i f o r m . 
T h e above assumptions i m p l y t h a t for each s u b n e t w o r k -B ; o f At, 

and each s u b n e t w o r k Bj o f Aj, we have 

L(Bi) L(Bj) 

P { « * B i , 8 e B j } = P i a j T f J ^ ) . 

The general ized d i s t r i b u t i o n f u n c t i o n F(s) o f sag is t h e n 

k k 

= P{s*fi < *} = X £ PI qjPKp < s\ « e Af, 8 e Aj) 
i=i ;=i 

k k 

= X XPi(liFiAs) 

where Fij(s) is the c o n d i t i o n a l d i s t r i b u t i o n f u n c t i o n 

Ftj(s) = P{safi <s\*eAi,Be Aj} . 

The cor responding dens i ty f u n c t i o n f(s) t akes t he f o r m 

/ ( * ) = Z XtP'toM*) 
c=i j=i 

where / y ( s ) is the dens i t y f u n c t i o n cor responding t o the c o n d i t i o n a l 
d i s t r i b u t i o n func t i on Fij(s) . 
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The intensities U, Uj, describing the sending and receiving of traffic 
in the subnetworks Ax, A2, . . . , Ak, are (as a consequence of the uniform 
distr ibut ion wi th in subnetworks) 

Hence the intensities have to satisfy the conditions 

k k 

£uL(At) = £ujL{Aj) = \ . 

Using the intensities we may write f(s) i n the form 
k k 

(5.1) / » = £ £ UujLiAi) L(Aj)fij(s) 
• = i j=i 

k 

= £ UL{Ai)fT(8) 
i=l 

where /;(<s) is the density function 

k k 

fM = £ qjiji*) = £ UJKAJ)^) 

corresponding to the conditional distr ibution function 

F;(s) = P{safS < s\ * € At) . 

Hence the density function f(s) can be computed as a weighted sum 
of the conditional densities /«(«). The functions fu(s) can be determined 
using the results presented i n Chapters 2 and 4, since we have assumed the 
distr ibution of oc and fi to be uniform inside the subnetworks Ax, 
.lo , . . . , Ak . 

5.2. Solution of the generalized problem 

We shall describe only the main principles of the solution which is 
ba eil o n the assumptions made in 5.1. 

On distance distributions i n networks 4;{ 

We suppose that the intensities are constant on each edge. The re
flection points of the junct ion points divide the edges of A in to paths, 
to which Corollary 2.5.1 applies. We consider these paths, as well as 

Av A2 edges wi thout reflection points, as the elements 
par t i t ion of A; they w i l l be called basic paths. 

According to Corollary 2.5.1, the reflection set T(Af), i — 1 ,2 , . 
consists of distinct points and of certain paths (reflection paths) 

Ah of a 

k. 

•An > -"4,2 , • • • , Aik 

each of which has the length L(Af). According to (2.6), we have ki<m. 
On each An,, h — 1, 2, . . . , ki, the intensities are constant, since other
wise Aih would contain a junction point which would have a reflection 
point on the basic path At. 

Fig. 5.1 represents a network A and its part i t ion into the basic 
paths Ai. The reflection points of the junct ion points are indicated by 
stars (*) and the reflection paths of one Ai by heavier lines. 

Fig. 5.1 

The conditional density function /,(«) can now be computed using 
a par t i t ion Blt B2, . . . the elements of which are 

1° Ai, 
2° An,, h = 1, 2 h , 
3° the remaining basic paths, and parts of such paths. 

When computing f^s) we thus use a special part i t ion {Bj},j = 1 , 2 , . . . 
which, for the most part, coincides wi th the part i t ion Av A2, . . . , Ak. 
The conditional densities / y ( s ) , of which /j(s) is a weighted sum, are 
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o f th ree types cor responding t o the three t y p e s (1°, 2 ° , 3 ° , as l i s t ed above) 
o f Bj, t o w h i c h the s i n k fi can belong. 

L e t us denote L(A() = cv L(Bj) = c 2, a n d l e t the m i n i m u m distance 
be tween the po in t s o f At a n d Bj be c 3. T h e dens i ty func t ions /,-,•(«) 
are t h e n as fo l lows. ( E a c h t y p e can be easi ly de r ived us ing t h e densit ies 
o f t h e examples 1° a n d 2° i n 4.8 as c o n d i t i o n a l densities.) 

1° I f Bj = Ai, we have 

fij(s) = 2 c f 2 ^ - a) [<p(a) - <p(s - ej] . 

Bj = A ; 

Fig. 5.2 

2° I f Bj = Aih, h — 1 , 2 , . . . , hi, in which case c 2 = Cj, we have 

fij(s) = 2 cr 2 ( s - c 3 ) [<p(a - c3) — <p(s — Ci — c3)] . 

Bj« A ; h 

Fig. 5.3 
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3° I f Bj is one o f t h e r e m a i n i n g basic pa ths , we have 

f..(s) = c r ' c ^ 1 [Us - Cj) - A(s - q - c3) 

— A(s - c 2 — Cj) + A(s — c x — c 2 — c3)] 

where A(s) = s<p(s) . 

fijls) 

c' 

C'+Cj C"+Cj C , + C , + - C j s ' 

c = m i n ^ . c , ) 
c"= maxtc^.Cx) 

A; 

Fig. 5.4 

Since f(s) is a w e i g h t e d s u m o f func t ions /•,(«) o f t h e t y p e s de
scr ibed above , we conclude t h a t the g r a p h o f f(s) is o f t he same f o r m 
as t h a t o f f(s) i n Chapte r 4, a n d i t has a f i n i t e n u m b e r o f d i scon t inu i t i e s . 

5.3. Computer program 

A genera l p r o g r a m for t he eva lua t i on o f t h e dens i ty f u n c t i o n / ( s ) 
o f an a r b i t r a r y n e t w o r k A has been w r i t t e n fo r t he compute r E l l i o t t 803. 

T h e p r o g r a m w o r k s accord ing t o t h e p r i n c i p l e e x p l a i n e d i n 5.2. 
I n o rder t o f i n d the basic pa ths , i t f i r s t locates a l l r e f l ec t ion p o i n t s o f 
j u n c t i o n po in t s . U s i n g t h e p a r t i t i o n t h u s ob t a ined , i t t h e n computes 
the d e n s i t y f u n c t i o n f(s). T h e values o b t a i n e d are exact w h e n t h e da t a 
concern ing A are g i v e n as integers. 

I n t he process o f l o c a t i n g t he r e f l ec t i on p o i n t s o f the j u n c t i o n po in t s 
a t e c hn i que o f » m a r c h i n g p o i n t sets» is e m p l o y e d . I t m a y be descr ibed 
as fo l lows . 
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F r o m t h e j u n c t i o n p o i n t cx a f i c t i t i o u s set o f »marching p o i n t s * is 

d i s p a t c h e d i n a l l d i r e c t i o n s w i t h a c o n s t a n t speed. T h e »marching set» 

f o l l o w s a l l p a t h s o f t h e n e t w o r k a n d spl i ts i n t o subsets a t t h e j u n c t i o n 

p o i n t s . T h e p o i n t s w h e r e t w o or m o r e sets meet a g a i n c o r r e s p o n d t o 

t h e r e f l e c t i o n p o i n t s o f cx. I n such a p o i n t t h e m a r c h i n g sets become 

e x t i n c t , i f t h e r e f l e c t i o n p o i n t is n o t a t t h e same t i m e a j u n c t i o n p o i n t . 

T h i s process s i m u l a t e s t h e b e h a v i o u r o f t h e f u n c t i o n na(s). A s i m i l a r 

t e c h n i q u e is used w h e n searching f o r t h e r e f l e c t i o n p a t h s Aih o f t h e 

basic p a t h s At. 

T h e p r o g r a m takes i n t h e i n f o r m a t i o n a b o u t t h e n e t w o r k A b y 

edges. T h e labels o f t h e e n d p o i n t s , t h e l e n g t h , a n d t h e t w o i n t e n s i t i e s 

are g i v e n f o r each edge. T h e p r o g r a m is subject t o n o r e s t r i c t i o n s con

c e r n i n g t h e s t r u c t u r e o f t h e n e t w o r k . T h e m o s t i m p o r t a n t c a p a c i t y 

l i m i t a t i o n s are: 

n u m b e r o f edges mx < 250 , 

n u m b e r o f basic p a t h s k < 1250 , 

m a x sx/t < 500 . 
E a c h r e s t r i c t i o n can be r e l i e v e d a t t h e expense o f t h e others . T h e r u n n i n g 

t i m e var ies cons iderably d e p e n d i n g o n t h e n a t u r e a n d size o f t h e n e t w o r k . 

T h e r u n n i n g t i m e f o r a 5 x 5 n e t o f squares is 16 m i n u t e s , b u t for a 

10 X 10 n e t i t is n e a r l y 3 hours . 

5.4. Applications 

W e s h a l l close our s t u d y w i t h a discussion o f t h e possibi l i t ies o f a p p l y i n g 

t h e p r e v i o u s results . 

F r o m t h e p o i n t o f v i e w o f p r a c t i c a l t r a f f i c studies, t h e f a c t t h a t we 

have i g n o r e d t h e c a p a c i t y l i m i t a t i o n s seems t o be a w e a k p o i n t i n o u r 

m o d e l . T h i s is, however , o n l y a seeming def ic iency , since t r a f f i c con

gest ion can be a c c o u n t e d f o r b y m e a s u r i n g t h e distances i n t i m e . 

A n o t h e r l i m i t a t i o n seems t o be t h a t t h e a m o u n t o f t r a f f i c between 

t w o regions is assumed t o depend o n l y o n t h e sizes a n d t h e t r a f f i c i n 

tensit ies o f these regions. T h e r e is no a c c o u n t i n g f o r t h e distance between 

t h e regions. A n a r b i t r a r y g r a v i t a t i o n l a w d e p e n d i n g o n t h e d is tance can, 

however , be a d d e d t o o u r m o d e l b y w e i g h t i n g t h e d e n s i t y f u n c t i o n f(s) 

w i t h a g i v e n (usual ly m o n o t o n i c a l l y decreasing) w e i g h t f u n c t i o n g(s). 

Hence the dens i ty f u n c t i o n fg(s) i n d u c e d b y t h e g r a v i t a t i o n l a w g(s) is 
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/(«) 9(s) 

(5-2) fe(s) = ~~ 

j /(«) g(*)ds 

0 
Conversely , i f a n observable t r a f f i c f l o w obeys a l a w o f t h i s k i n d w i t h an 

u n k n o w n g r a v i t a t i o n l a w g(s) ( w h i c h is o b v i o u s l y d e t e r m i n e d o n l y u p 

t o a c o n s t a n t f a c t o r ) , t h e n g(s) can be e s t i m a t e d f r o m (5.2) b y com

p u t i n g f(s) f r o m t h e n e t w o r k a n d e s t i m a t i n g / (s) b y s a m p l i n g . 

T h e above considerat ions are concerned w i t h t h e t o t a l t r a f f i c i n A. 

I n p r a c t i c a l studies, h o w e v e r , one is o f t e n i n t e r e s t e d o n l y i n t h e t r a f f i c 

b e t w e e n t w o p a r t i c u l a r regions. I t is q u i t e possible t o use t h e results 

achieved above i n d e a l i n g w i t h such p r o b l e m s . W e shal l i l l u s t r a t e t h i s 

w i t h a n example . 

L e t us assume t h a t one has t o f i n d t h e distance d i s t r i b u t i o n p e r t a i n i n g 

t o t h e t r a f f i c between t h e t w o separate regions ( s u b n e t w o r k s ) Ax a n d 

A2 i n A. T h e i n t e r n a l t r a f f i c o f Ax a n d A2 a n d t h e t r a f f i c sent a n d 

rece ived b y t h e o t h e r p a r t s o f A have t o be i g n o r e d . T h e t r a f f i c outside 

Ax a n d A2 is e l i m i n a t e d b y m a k i n g t h e p e r t i n e n t i n t e n s i t i e s e q u a l t o 

zero. F o r t h e sake o f s i m p l i c i t y , we shal l also suppose t h a t i n Ax a n d 

A2 t h e intensit ies are c o n s t a n t . 

W e i n t r o d u c e t h e n o t a t i o n s L(AX) = ax, L(A2) = a2, a0 = ax + a2. 

T h e d i s t r i b u t i o n f u n c t i o n F(s) can t h e n be w r i t t e n i n t h e f o r m 

m = PK? < s} 

= alao2P{sae < * l * € Ai ,8 € AJ 

+ a\a,o2P{saii <s\cxeA2,8eA2} 

+ 2axa2a^2P{saip < s\ cx € Ax , 8 € A2 or cx e A2 , 8 6 Ax) 

= o j a i " 2 + a\a^F2(s) + 2 a , a 2 a 0 " 2 F l 2 ( s ) 

where F^s) a n d F2(s) are t h e d i s t r i b u t i o n f u n c t i o n s r e l a t e d t o t h e 

i n t e r n a l t r a f f i c o f Ax a n d A2, w h i l e FX2(s) is t h e d i s t r i b u t i o n f u n c t i o n 

for t h e t r a f f i c between Ax a n d A2. A p p l y i n g t h e same a r g u m e n t t o 

t h e d e n s i t y f u n c t i o n s w e o b t a i n 

f n ( 8 ) = (2 a i a 2 y l [a*J(6) - a2Jx(s) - alf2(s)] 

f r o m w h i c h fX2(s) can be e v a l u a t e d , since t h e densities / ( s ) , fx(s), a n d 

f2(s) are r e l a t e d t o t h e i n t e r n a l t r a f f i c o f t h e n e t w o r k s A, Ax, a n d A2. 
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