Some polynomials associated with regular polygons

Seppo Mustonen
Department of Mathematics and Statistics
FI-00014 University of Helsinki, Finland email: seppo.mustonen@survo.fi

Pentti Haukkanen
School of Information Sciences
FI-33014 University of Tampere, Finland
email: pentti.haukkanen@uta.fi

Jorma Merikoski

School of Information Sciences
FI-33014 University of Tampere, Finland
email: jorma.merikoski@uta.fi

Abstract. Let G_{n} be a regular n -gon with unit circumradius, and $\mathrm{m}=$ $\left\lfloor\frac{n}{2}\right\rfloor, \mu=\left\lfloor\frac{n-1}{2}\right\rfloor$. Let the edges and diagonals of G_{n} be $e_{n 1}<\cdots<e_{n m}$. We compute the coefficients of the polynomial

$$
\left(x-e_{n 1}^{2}\right) \cdots\left(x-e_{n \mu}^{2}\right)
$$

They appear to form a well-known integer sequence, and we study certain related sequences, too. We also compute the coefficients of the polynomial

$$
\left(x-s_{n 1}^{2}\right) \cdots\left(x-s_{n m}^{2}\right)
$$

where

$$
s_{n i}=\cot \frac{(2 i-1) \pi}{2 n}, \quad i=1, \ldots, m
$$

We interpret $s_{n 1}$ as the sum of all individual edges and diagonals of G_{n} divided by n. We also discuss the interpretation of $s_{n 2}, \ldots, s_{n m}$, and present a conjecture on expressing $s_{n 1}, \ldots, s_{n m}$ using $e_{n 1}, \ldots, e_{n m}$.

[^0]
1 Introduction

Throughout, G_{n} is a regular n -gon with unit circumradius, and

$$
\mathrm{m}=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor, \quad \mu=\left\lfloor\frac{\mathrm{n}-1}{2}\right\rfloor .
$$

Long time ago Kepler observed [2] that the squares of the edge and diagonals of G_{7} are the zeros of the polynomial $x^{3}-7 x^{2}+14 x-7$. This raises a general question: Are the squares of (the lengths of) the edge and diagonals of G_{n}, excluding the diameter, the zeros of a monic polynomial of degree μ with integer coefficients?

Yes, they are. This follows from Savio's and Suruyanarayan's [6] results, which, however, do not give the polynomial explicitly. We will do it in Section 2. A natural further question concerns the edge and diagonals themselves, instead of their squares. They are not zeros of a polynomial described above, but we will in Section 3 see that the squared sum of all individual edges and diagonals is the largest zero of a monic polynomial of degree m with integer coefficients. We will study geometric interpretation of the square roots of the other zeros in Section 4. In Section 5, we will present a conjecture on expressing these square roots as simple linear combinations of the edge and diagonals. We will in Section 6 notify that the coefficients of the first-mentioned polynomial form an OEIS [4] sequence, and also study OEIS sequences corresponding to certain related polynomials. Finally, we will complete our paper with conclusions and further questions in Section 7.

2 Squared chords

Let (the lengths of) the edge and diagonals of G_{n} be $e_{n 1}<\cdots<e_{n m}$. Call them (the lengths of) the chords. Then

$$
e_{n k}=2 \sin \frac{k \pi}{n}, \quad k=1, \ldots, m
$$

Our problem is to find the coefficients $a_{m k}$ and $b_{\mathfrak{m k}}$ of the polynomials

$$
\begin{gather*}
A_{m}(x)=\left(x-e_{n+2,1}^{2}\right) \cdots\left(x-e_{n+2, \mathfrak{m}}^{2}\right)= \\
x^{m}+a_{m, m-1} x^{m-1}+\cdots+a_{m 1} x+a_{m 0} \tag{1}
\end{gather*}
$$

where n is even, and

$$
\begin{equation*}
B_{m}(x)=\left(x-e_{n 1}^{2}\right) \cdots\left(x-e_{n \mathfrak{m}}^{2}\right)=x^{\mathfrak{m}}+b_{m, m-1} x^{m-1}+\cdots+b_{m 1} x+b_{m 0} \tag{2}
\end{equation*}
$$

where \mathfrak{n} is odd. We solve it in two theorems. Mustonen [3] found them experimentally and sketched their proofs.

Let $\operatorname{tridiag}_{\mathfrak{m}}(x, y)$ denote the symmetric tridiagonal $\mathfrak{m} \times \mathfrak{m}$ matrix with all main diagonal entries x and first super- and subdiagonal entries y. For $m \geq 2$, define

$$
\mathbf{A}_{\mathfrak{m}}=\operatorname{tridiag}_{\mathfrak{m}}(2,1)
$$

and

$$
\mathbf{B}_{\mathfrak{m}} \text { is as } \mathbf{A}_{\mathfrak{m}} \text { but the }(\mathfrak{m}, \mathfrak{m}) \text { entry equals } 3 .
$$

Also define $\mathbf{A}_{1}=(2)$ and $\mathbf{B}_{1}=(3)$. Denote by spec the (multi)set of eigenvalues.

Lemma 1 For all $\mathrm{m} \geq 1$,

$$
\begin{gather*}
\text { spec } \mathbf{A}_{\mathfrak{m}}=\left\{\left.4 \sin ^{2} \frac{k \pi}{n+2} \right\rvert\, k=1, \ldots, m\right\}=\left\{e_{n+2,1}^{2}, \ldots, e_{n+2, m}^{2}\right\}, \tag{3}\\
\operatorname{spec} \mathbf{B}_{\mathfrak{m}}=\left\{\left.4 \sin ^{2} \frac{k \pi}{n} \right\rvert\, k=1, \ldots, m\right\}=\left\{e_{n 1}^{2}, \ldots, e_{n m}^{2}\right\} .
\end{gather*}
$$

Proof. See [1, 5, 6].
Theorem 1 In (1),

$$
\begin{equation*}
a_{m k}=(-1)^{m-k}\binom{m+1+k}{2 k+1} \tag{4}
\end{equation*}
$$

Proof. Denoting

$$
P_{\mathfrak{m}}(x)=x^{\mathfrak{m}}+\sum_{k=0}^{m-1}(-1)^{\mathfrak{m}-k}\binom{m+1+k}{2 k+1} x^{k}
$$

our claim is that

$$
\begin{equation*}
P_{m}(x)=A_{m}(x) \tag{5}
\end{equation*}
$$

for all $\mathfrak{m} \geq 1$. Expanding $\operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{A}_{\mathfrak{m}}\right)$ along the last row, we have

$$
A_{m+1}(x)=(x-2) A_{m}(x)-A_{m-1}(x)
$$

for all $m \geq 2$. Since

$$
P_{1}(x)=x-2=A_{1}(x)
$$

and

$$
P_{2}(x)=x^{2}-4 x+3=A_{2}(x),
$$

the claim (5) follows by showing that

$$
\begin{equation*}
P_{m+1}(x)=(x-2) P_{m}(x)-P_{m-1}(x) \tag{6}
\end{equation*}
$$

for all $m \geq 2$. Mustonen [3] did it by using Mathematica. We will do the computations algebraically in the appendix.

The formula (4) yields $a_{\mathfrak{m} m}=1$, consistently with the coefficient of x^{m} in (1). It also allows to define $a_{00}=1$. The polynomial

$$
\begin{equation*}
\tilde{A}_{m+1}(x)=(x-4) A_{\mathfrak{m}}(x)=x^{\mathfrak{m}+1}+\alpha_{\mathfrak{m}+1, \mathfrak{m}} x^{m}+\cdots+\alpha_{m+1,1} x+\alpha_{\mathfrak{m}+1,0} \tag{7}
\end{equation*}
$$

has $e_{n+2, m+1}^{2}=4$ as the additional zero. By (4),

$$
\begin{equation*}
\alpha_{m+1, k}=(-1)^{m-k+1}\left(\binom{m+k}{2 k-1}+4\binom{m+1+k}{2 k+1}\right) . \tag{8}
\end{equation*}
$$

(We define $\binom{n}{k}=0$ if $k<0$.)
Theorem 2 In (2),
$b_{m k}=(-1)^{m-k} \frac{2 m+1}{m-k}\binom{m+k}{2 k+1}=(-1)^{m-k}\left(\binom{m+1+k}{2 k+1}+\binom{m+k}{2 k+1}\right)$.
Proof. The second equation follows from trivial computation. To show the first, denote

$$
Q_{\mathfrak{m}}(x)=x^{\mathfrak{m}}+\sum_{k=0}^{m-1}(-1)^{m-k} \frac{2 m+1}{m-k}\binom{m+k}{2 k+1} x^{k}
$$

and claim that

$$
\begin{equation*}
\mathrm{Q}_{\mathfrak{m}}(x)=\mathrm{B}_{\mathfrak{m}}(x) \tag{10}
\end{equation*}
$$

for all $m \geq 1$. Expanding $\operatorname{det}\left(x \mathbf{I}_{m}-\mathbf{B}_{m}\right)$, we have

$$
B_{m+1}(x)=(x-3) A_{m}(x)-A_{m-1}(x)
$$

for all $m \geq 2$. Since

$$
\mathrm{Q}_{1}(\mathrm{x})=\mathrm{x}-3=\mathrm{B}_{1}(\mathrm{x})
$$

and

$$
\mathrm{Q}_{2}(x)=x^{2}-5 x+5=\mathrm{B}_{2}(x)
$$

the claim (10) follows by showing that

$$
\begin{equation*}
Q_{m+1}(x)=(x-3) P_{m}(x)-P_{m-1}(x) \tag{11}
\end{equation*}
$$

for all $\mathrm{m} \geq 2$. Mustonen [3] did also this by using Mathematica, and we will do the computations algebraically in the appendix.

For $k=m$, the first expression in (9) is undefined but the second is defined. (We define $\binom{n}{k}=0$ if $n<k$.) It gives $b_{m m}=1$, the coefficient of x^{m} in (2). It also allows to define $\mathrm{b}_{00}=1$.

Corollary 1 The sum of all individual squared chords of G_{n} is n^{2}. Their product is n^{n}.

Proof. By Theorems 1 and 2 (or by [7, Eqs. (20) and (24)]), we obtain

$$
\begin{aligned}
& e_{2 m, 1}^{2}+\cdots+e_{2 m, m-1}^{2}=-a_{m-1, m-2}=2(m-1) \\
& e_{2 m+1,1}^{2}+\cdots+e_{2 m+1, m}^{2}=-b_{m, m-1}=2 m+1
\end{aligned}
$$

and

$$
\begin{aligned}
e_{2 m, 1}^{2} \cdots e_{2 m, m-1}^{2} & =(-1)^{m} a_{m-1,0}=m \\
e_{2 m+1,1}^{2} \cdots e_{2 m+1, m}^{2} & =(-1)^{m} b_{m 0}=2 m+1
\end{aligned}
$$

Denoting by Σ_{n} the sum and by Π_{n} the product of all individual squared chords of G_{n}, we therefore have

$$
\begin{aligned}
\Sigma_{2 m} & =2 m \cdot 2(m-1)+m \cdot 4=(2 m)^{2} \\
\Sigma_{2 m+1} & =(2 m+1)(2 m+1)=(2 m+1)^{2}
\end{aligned}
$$

and

$$
\Pi_{2 m}=m^{2 m} 4^{m}=(2 m)^{2 m}, \quad \Pi_{2 m+1}=(2 m+1)^{2 m+1}
$$

3 Sum of chords

The sum of all individual chords of G_{n} is

$$
S_{n}=n s_{n}
$$

where

$$
s_{n}=e_{n 1}+\cdots+e_{n, m-1}+\frac{1}{2} e_{n m}=e_{n 1}+\cdots+e_{n, m-1}+1
$$

if n is even, and

$$
s_{n}=e_{n 1}+\cdots+e_{n m}
$$

if n is odd, is the sum of different (lengths of) chords but the diameter is halved.

Theorem 3 For all $n \geq 3$,

$$
s_{n}=\cot \frac{\pi}{2 n}
$$

Proof. We have [7, Eq. (21)]

$$
\begin{equation*}
\sum_{k=1}^{n-1} \sin \frac{k \pi}{n}=\cot \frac{\pi}{2 n} . \tag{12}
\end{equation*}
$$

If \mathfrak{n} is even, this implies

$$
\begin{array}{r}
s_{n}=\sum_{k=1}^{m-1} 2 \sin \frac{k \pi}{n}+\frac{1}{2} \cdot 2=\sum_{k=1}^{m-1} \sin \frac{k \pi}{n}+1+\sum_{k=m+1}^{2 m-1} \sin \frac{k \pi}{n}= \\
\sum_{k=1}^{2 m-1} \sin \frac{k \pi}{n}=\cot \frac{\pi}{2 n} .
\end{array}
$$

If n is odd, then

$$
s_{n}=\sum_{k=1}^{m} 2 \sin \frac{k \pi}{n}=\sum_{k=1}^{m} \sin \frac{k \pi}{n}+\sum_{k=m+1}^{2 m} \sin \frac{k \pi}{n}=\sum_{k=1}^{2 m} \sin \frac{k \pi}{n}=\cot \frac{\pi}{2 n} .
$$

Is s_{n} a zero of a monic polynomial of degree m with integer coefficients? Yes for $s_{4}=\cot \frac{\pi}{8}=1+\sqrt{2}$; it is a zero of $x^{2}-2 x-1$. On the other hand, it is easy to see that $s_{5}=\cot \frac{\pi}{10}=\sqrt{5+2 \sqrt{5}}$ is not a zero of such a polynomial. But
$s_{5}^{2}=5+2 \sqrt{5}$ is a zero of $x^{2}-10 x+5$, and the other zero is $5-2 \sqrt{5}=\cot ^{2} \frac{3 \pi}{10}$. Also $s_{4}^{2}=3+2 \sqrt{2}$ has this property: it is a zero of $x^{2}-6 x+1$, and the other zero is $3-2 \sqrt{2}=\cot ^{2} \frac{3 \pi}{8}$.

Generally, denoting

$$
s_{n i}=\cot \frac{(2 i-1) \pi}{2 n}, \quad i=1, \ldots, m
$$

this motivates us to study for even n the coefficients of the polynomial

$$
\begin{equation*}
\mathrm{U}_{\mathfrak{m}}(x)=\left(x-s_{n 1}^{2}\right) \cdots\left(x-s_{n \mathfrak{m}}^{2}\right)=x^{\mathfrak{m}}+u_{\mathfrak{m}, \mathfrak{m}-1} x^{\mathfrak{m}-1}+\cdots+u_{\mathfrak{m} 1} x+u_{\mathfrak{m} 0} \tag{13}
\end{equation*}
$$

and for odd n those of

$$
\begin{equation*}
V_{m}(x)=\left(x-s_{n 1}^{2}\right) \cdots\left(x-s_{n \mathfrak{m}}^{2}\right)=x^{m}+v_{m, m-1} x^{m-1}+\cdots+v_{m 1} x+v_{m 0} \tag{14}
\end{equation*}
$$

We will see that they all are integers. The largest zero is $s_{n}^{2}=s_{n 1}^{2}$.
Mustonen [3] found the following theorem experimentally and also presented its proof. Yaglom and Yaglom [9, Eqs. (7) and (8)] formulated (16) differently.

Theorem 4 In (13),

$$
\begin{equation*}
u_{m k}=(-1)^{k}\binom{n}{2 k} \tag{15}
\end{equation*}
$$

In (14),

$$
\begin{equation*}
v_{m k}=(-1)^{k}\binom{n}{2 k+1} \tag{16}
\end{equation*}
$$

Proof. We have [10]

$$
\begin{equation*}
\cot n t=\frac{\sum_{k=0}^{m}(-1)^{k}\binom{n}{2 k} \cot ^{n-2 k} t}{\sum_{k=0}^{m}(-1)^{k}\binom{n}{2 k+1} \cot ^{n-2 k-1} t} \tag{17}
\end{equation*}
$$

Denote

$$
t_{i}=\frac{(2 i-1) \pi}{2 n}, \quad i=1, \ldots, m
$$

Since $\cot n t_{i}=0,(17)$ yields

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{n}{2 k} \cot ^{n-2 k} t_{i}=0 \tag{18}
\end{equation*}
$$

First assume n even. The polynomial

$$
\tilde{\mathrm{u}}_{\mathfrak{m}}(x)=\sum_{k=0}^{m}(-1)^{m-k}\binom{n}{2 k} x^{k}
$$

is monic and has degree m. For all $i=1, \ldots, m$,

$$
\begin{aligned}
\tilde{\mathrm{u}}_{\mathrm{m}}\left(s_{n i}^{2}\right) & =\sum_{k=0}^{m}(-1)^{m-k}\binom{2 m}{2 k} s_{n i}^{2 k}=\sum_{l=0}^{m}(-1)^{l}\binom{2 m}{2 m-2 l} s_{n i}^{2 m-2 l} \\
& =\sum_{l=0}^{m}(-1)^{l}\binom{2 m}{2 l} s_{n i}^{2 m-2 l}=\sum_{l=0}^{m}(-1)^{l}\binom{n}{2 l} \cot ^{n-2 l} t_{i}=0
\end{aligned}
$$

by (18). Hence

$$
\tilde{\mathrm{U}}_{\mathfrak{m}}(x)=\left(x-s_{\mathfrak{n} 1}^{2}\right) \cdots\left(x-s_{\mathfrak{n}}^{2}\right)=\mathrm{U}_{\mathfrak{m}}(x)
$$

and (15) follows.
Second, assume n odd. The polynomial

$$
\tilde{V}_{m}(x)=\sum_{k=0}^{m}(-1)^{m-k}\binom{n}{2 k+1} x^{k}
$$

is monic and has degree m. For all $i=1, \ldots, m$,

$$
\begin{aligned}
\tilde{V}_{\mathfrak{m}}\left(s_{n i}^{2}\right)=\sum_{k=0}^{m}(-1)^{m-k}\binom{2 m+1}{2 k+1} s_{n i}^{2 k} & =\sum_{l=0}^{m}(-1)^{l}\binom{2 m+1}{2 m-2 l+1} s_{n i}^{2 m-2 l}= \\
s_{n i}^{-1} \sum_{l=0}^{m}(-1)^{l}\binom{2 m+1}{2 m-2 l+1} s_{n i}^{2 m+1-2 l} & =s_{n i}^{-1} \sum_{l=0}^{m}(-1)^{l}\binom{2 m+1}{2 l} s_{n i}^{2 m+1-2 l} \\
& =s_{n i}^{-1} \sum_{l=0}^{m}(-1)^{l}\binom{n}{2 l} \cot ^{n-2 l} t_{i}=0,
\end{aligned}
$$

again by (18). Hence

$$
\tilde{V}_{\mathfrak{m}}(x)=\left(x-s_{\mathfrak{n} 1}^{2}\right) \cdots\left(x-s_{\mathfrak{n} m}^{2}\right)=V_{\mathfrak{m}}(x)
$$

and (16) follows.

Corollary 2 The number s_{n}^{2} is the largest zero of the polynomial

$$
x^{m}+u_{m, m-1} n x^{m-1}+\cdots+u_{m 1} n^{m-1} x+u_{m 0} n^{m}
$$

if n is even, and that of

$$
x^{m}+v_{m, m-1} n x^{m-1}+\cdots+v_{m 1} n^{m-1} x+v_{m 0} n^{m}
$$

if n is odd.

4 Interpreting $s_{n, m-k+1}, k=1, \ldots,\left\lfloor\frac{n-1}{3}\right\rfloor, n$ odd

The zeros of $A_{m}(x)$ and $B_{m}(x)$ describe the squared chords of $G_{2 m+2}$ and $\mathrm{G}_{2 \mathrm{~m}+1}$, respectively, excluding the diameter. The largest zero of $\mathrm{U}_{\mathrm{m}}(x), s_{2 m, 1}^{2}=$ $s_{2 m}^{2}$, and that of $V_{m}(x), s_{2 m+1,1}^{2}=s_{2 m+1}^{2}$, describe the squared sum of chords but halving the diameter. In other words, the sum of all individual chords of G_{n} is divided by n and the result is squared.

What about the other zeros?
Let the vertices of G_{n} be P_{0}, \ldots, P_{n-1}, where $P_{k}=\left(\cos \frac{k \pi}{n}, \sin \frac{k \pi}{n}\right)$. Then $e_{n k}=P_{0} P_{k}=2 \sin \frac{k \pi}{n}, k=1, \ldots, m$. Since $P_{0} P_{n-k}=P_{0} P_{k}$, we define $e_{n, n-k}=$ $e_{n k}, k=1, \ldots, m$.

Fix n and denote $e_{k}=e_{n k}$ for brevity. Assume that $3 k<n$; i.e., $k<\frac{n}{3}$. Then the line segments $P_{0} P_{2 k}$ and $P_{k} P_{n-k}$ intersect; let Q_{k} be their intersection point and denote $x_{k}=P_{0} Q_{k}$. Because $\triangle Q_{k} P_{0} P_{k} \sim \triangle Q_{k} P_{2 k} P_{n-k}$, we have

$$
\frac{x_{\mathrm{k}}}{e_{2 \mathrm{k}}-x_{\mathrm{k}}}=\frac{e_{\mathrm{k}}}{e_{3 \mathrm{k}}} .
$$

Hence

$$
\begin{gathered}
x_{k}=\frac{e_{k} e_{2 k}}{e_{k}+e_{3 k}}=\frac{2 \sin \frac{k \pi}{n} \sin \frac{2 k \pi}{n}}{\sin \frac{k \pi}{n}+\sin \frac{3 k \pi}{n}}= \\
\frac{2 \sin \frac{k \pi}{n} \sin \frac{2 k \pi}{n}}{\sin \left(\frac{2 k \pi}{n}-\frac{2 k \pi}{n}\right)+\sin \left(\frac{2 k \pi}{n}+\frac{k \pi}{n}\right)}=\frac{\sin \frac{k \pi}{n} \sin \frac{2 k \pi}{n}}{\sin \frac{2 k \pi}{n} \cos \frac{k \pi}{n}}=\tan \frac{k \pi}{n} .
\end{gathered}
$$

If \mathfrak{n} is odd, then

$$
\tan \frac{k \pi}{n}=\cot \left(\frac{\pi}{2}-\frac{k \pi}{2 m+1}\right)=\cot \frac{[2(m-k)+1] \pi}{2 n}=s_{n, m-k+1} .
$$

Thus $s_{n, m-k+1}=P_{0} Q_{k}, k=1, \ldots,\left\lfloor\frac{n-1}{3}\right\rfloor$. In other words, the $\left\lfloor\frac{n-1}{3}\right\rfloor$ smallest zeros of $V_{m}(x)$ are the squared line segments $P_{0} Q_{k}, k=1, \ldots,\left\lfloor\frac{n-1}{3}\right\rfloor$. Mustonen [3] found this experimentally. The largest zero is already interpreted, but the interpretation of the rest of zeros remains open. For some experimental observations, see [3]. Interpretation of the zeros of $\mathrm{U}_{\mathfrak{m}}(x)$, except the largest, remains open, too.

5 Expressing $s_{n 1}, \ldots, s_{n m}$ using $e_{n 1}, \ldots, e_{n m}$

Mustonen's [3] experiments make conjecture that, given \mathfrak{n}, there are numbers $\lambda_{n k}^{(i)} \in\{0, \pm 1\}, i, k=1, \ldots, m$, such that

$$
s_{n i}=\lambda_{n 1}^{(i)} e_{n 1}+\cdots+\lambda_{n, m-1}^{(i)} e_{n, m-1}+\lambda_{n m}^{(i)} e_{n m}^{\prime}, \quad i=1, \ldots, m
$$

where

$$
e_{n m}^{\prime}= \begin{cases}\frac{1}{2} e_{n m} & \text { if } n \text { is even } \\ e_{n m} & \text { if } n \text { is odd. }\end{cases}
$$

In other words,

$$
\cot \frac{(2 i-1) \pi}{2 n}=2\left[\lambda_{n 1}^{(i)} \sin \frac{\pi}{n}+\cdots+\lambda_{n, m-1}^{(i)} \sin \frac{(m-1) \pi}{n}+\theta_{n} \lambda_{n m}^{(i)} \sin \frac{m \pi}{n}\right],
$$

where

$$
\theta_{n}=\left\{\begin{array}{cl}
\frac{1}{2} & \text { if } n \text { is even, } \\
1 & \text { if } n \text { is odd. }
\end{array}\right.
$$

This is true by (12) when $\mathfrak{i}=1\left(s_{n 1}=s_{n}, \lambda_{n 1}^{(1)}=\cdots=\lambda_{n m}^{(1)}=1\right)$ but remains generally open.

For example, let $n=15$. Denoting $s_{k}=s_{15, k}$ and $e_{k}=e_{15, k}$ for brevity, we have [3, p. 17]

$$
\begin{array}{lllllll}
s_{1}= & e_{1}+ & e_{2}+ & e_{3}+ & e_{4}+ & e_{5}+ & e_{6}+ \\
e_{3}+ & e_{7} \\
s_{2}= & & e_{6} \\
s_{3}= \\
s_{4}= & e_{1}-e_{2}+ & e_{3}- & e_{4}+ & e_{5}- & e_{6}+ & e_{7} \\
s_{4} & & e_{3}+ \\
s_{5}= & & e_{6} \\
s_{6}= & e_{1}-e_{2}+ & e_{3}+ & e_{4}- & e_{5}+ & e_{6}- & e_{7} \\
s_{7}= & e_{1}+ & e_{2}- & e_{3}- & e_{4}+ & e_{5}+ & e_{6}- \\
e_{7} .
\end{array}
$$

We study the zero coefficients in general. If and only if $d=\operatorname{gcd}(n, 2 i-1)>1$, then G_{n} "inherits" the chord

$$
s_{n i}=\cot \frac{(2 i-1) \pi}{2 n}
$$

from G_{d}. Then the chords of G_{d} are enough to express $s_{n i}$, and the coefficients of the remaining chords are zero. Indeed, in our example,

$$
\begin{gathered}
s_{2}=s_{15,2}=\cot \frac{3 \pi}{30}=\cot \frac{\pi}{10}=2\left(\sin \frac{\pi}{5}+\sin \frac{2 \pi}{5}\right) \\
s_{3}=s_{15,3}=\cot \frac{5 \pi}{30}=\cot \frac{\pi}{6}=2 \sin \frac{\pi}{3} \\
s_{5}=s_{15,5}=\cot \frac{9 \pi}{30}=\cot \frac{3 \pi}{10}=2\left(-\sin \frac{\pi}{5}+\sin \frac{2 \pi}{5}\right)
\end{gathered}
$$

showing that s_{3} is "inherited" from G_{3}, and s_{2} and s_{5} from G_{5}.
So we conjecture additionally that if and only if n is a prime or a power of 2 , then each $\lambda_{n k}^{(i)} \in\{ \pm 1\}$. Mustonen [3] gives also other experimental results and conjectures about the structure of the three-dimensional array $\left(\lambda_{n \mathrm{k}}^{(i)}\right)$, and presents an efficient algorithm to compute these numbers.

6 Connections with OEIS sequences

The (lexicographically ordered) sequence ($a_{m k}$) is A053122 in OEIS. Its first six terms are $a_{00}=1, a_{10}=-2, a_{11}=1, a_{20}=3, a_{21}=-4, a_{22}=1$.

The OEIS sequence A132460 consists of the numbers

$$
\begin{gathered}
t_{n 0}=1, \quad n=0,1,2, \ldots, \\
t_{n k}=(-1)^{k}\left(\binom{n-k}{k}+\binom{n-k-1}{k-1}\right), \quad n=2,3, \ldots, k=1, \ldots, m .
\end{gathered}
$$

The first six terms of its subsequence corresponding to odd values of n are $\mathrm{t}_{10}=1=\mathrm{b}_{00}, \mathrm{t}_{30}=1=\mathrm{b}_{11}, \mathrm{t}_{31}=-3=\mathrm{b}_{10}, \mathrm{t}_{50}=1=\mathrm{b}_{22}, \mathrm{t}_{51}=-5=\mathrm{b}_{21}$, $t_{52}=5=b_{20}$. In general, $b_{m k}=t_{2 m+1, m-k}$.

Also the characteristic polynomials of certain other tridiagonal matrices have connections with OEIS sequences. We study two of them.

Let $\operatorname{tridiag}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ denote the tridiagonal matrix with main diagonal, subdiagonal and superdiagonal entries those of vectors \mathbf{a}, \mathbf{b} and \mathbf{c}, respectively, and denote $x^{(k)}=x, \ldots, x, k$ copies. For $m \geq 3$, define

$$
\mathbf{C}_{\mathrm{m}}=\operatorname{tridiag}\left(\left(2^{(\mathrm{m})}\right),\left((-1)^{(\mathrm{m}-2)},-2\right),\left(-2,(-1)^{(\mathrm{m}-2)}\right)\right)
$$

and

$$
\mathbf{C}_{2}=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right), \quad \mathbf{C}_{1}=(2) .
$$

For $m \geq 1$, consider the polynomial

$$
C_{\mathfrak{m}}(x)=\operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{C}_{\mathfrak{m}}\right)=x^{\mathfrak{m}}+{c_{\mathfrak{m}, \mathfrak{m}-1} x^{m-1}+\cdots+\mathbf{c}_{\mathfrak{m} 1} x+\mathbf{c}_{\mathfrak{m} 0} .}
$$

and define $C_{0}(x)=1, c_{00}=c_{m m}=1$. The sequence A140882 consists of the numbers $(-1)^{m} c_{m k}$. Since $C_{0}(x)=1, C_{1}(x)=x-2, C_{2}(x)=x^{2}-4 x$, $C_{3}(x)=x^{3}-6 x^{2}+8 x$, its first ten terms are $1,2,-1,0,-4,1,0,-8,6,-1$, as listed in [4].

We have $x \tilde{\mathcal{A}}_{1}(x)=x^{2}-4 x=C_{2}(x)$ and $x \tilde{A}_{2}(x)=x^{3}-6 x^{2}+8 x=C_{3}(x)$, and generally

$$
\begin{equation*}
C_{m+1}(x)=x \tilde{\mathcal{A}}_{\mathfrak{m}}(x) \tag{19}
\end{equation*}
$$

for all $m \geq 1$. This can be proved similarly to the proofs of Theorems 1 and 2 . By (8), a formula for A140882 is then obtained. By (19), (7) and (3),

$$
\operatorname{spec} \mathbf{C}_{\mathfrak{m}}=\operatorname{spec} \mathbf{A}_{m-2} \cup\{0,4\}=\left\{\left.4 \sin ^{2} \frac{k \pi}{2 m-2} \right\rvert\, k=0, \ldots, m-1\right\}
$$

for $m \geq 3$.
Finally, the sequence A136672 motivates us to study the polynomial

$$
\begin{equation*}
F_{m+1}(x)=(x-2) A_{m}(x)=x^{m+1}+f_{m+1, m} x^{m}+\cdots+f_{m+1,1} x+f_{m+1,0} \tag{20}
\end{equation*}
$$

and its connections with the matrix $\mathbf{D}_{\mathfrak{m}}$, defined by

$$
\mathbf{D}_{\mathfrak{m}}=\operatorname{tridiag}\left(\left(2^{(\mathfrak{m})}\right),\left((-1)^{(\mathrm{m}-2)}, 0\right),\left((-1)^{(\mathrm{m}-1)}\right)\right)
$$

if $m \geq 3$, and

$$
\mathbf{D}_{2}=\left(\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right), \quad \mathbf{D}_{1}=(2) .
$$

By Theorem 1,

$$
\begin{equation*}
f_{m+1, k}=(-1)^{m-k+1}\left(\binom{m+k}{2 k-1}+2\binom{m+1+k}{2 k+1}\right) . \tag{21}
\end{equation*}
$$

For $m \geq 1$, consider the polynomial

$$
D_{\mathfrak{m}}(x)=\operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{D}_{\mathfrak{m}}\right)=x^{\mathfrak{m}}+\mathrm{d}_{\mathfrak{m}, \mathfrak{m}-1} x^{\mathfrak{m}-1}+\cdots+\mathrm{d}_{\mathfrak{m} 1} x+\mathrm{d}_{\mathfrak{m} 0}
$$

and define $D_{0}(x)=1, d_{00}=d_{m m}=1$. The sequence A136672 consists of the numbers $(-1)^{m} d_{m k}$. We have $D_{0}(x)=1, D_{1}(x)=x-2, D_{2}(x)=x^{2}-4 x+4$, $D_{3}(x)=x^{3}-6 x^{2}+11 x-6$. So its first ten terms are $1,2,-1,4,-4,1,6,-11,6,-1$, as listed in [4].

Since $F_{1}(x)=x-2=D_{1}(x), F_{2}(x)=x^{2}-4 x+4=D_{2}(x)$, and $F_{3}(x)=$ $x^{3}-6 x^{2}+11 x-6=D_{3}(x)$, it seems that

$$
\begin{equation*}
\mathrm{D}_{\mathfrak{m}}(\mathrm{x})=\mathrm{F}_{\mathfrak{m}}(\mathrm{x}) \tag{22}
\end{equation*}
$$

for all $m \geq 1$. This can be proved similarly to the previous proofs. By (21), a formula for A136672 follows. By (22), (20) and (3),

$$
\operatorname{spec} \mathbf{D}_{\mathfrak{m}}=\operatorname{spec} \mathbf{A}_{\mathfrak{m}-1} \cup\{2\}=\left\{\left.4 \sin ^{2} \frac{k \pi}{2 m} \right\rvert\, k=1, \ldots, m-1\right\} \cup\{2\}
$$

for $m \geq 2$.

7 Conclusions and further questions

The squared chords of G_{n}, excluding the diameter, are the zeros of a monic polynomial of degree μ with integer coefficients. Including the diameter, the degree is m.

The squared sum of all individual chords is the largest zero of a monic polynomial of degree m with integer coefficients. An equivalent fact is that the squared sum of all different (lengths of) chords but the diameter is halved, is a zero of such a polynomial. The zeros of this polynomial seem to be linear combinations of the chords with all coefficients 0 or ± 1.

Lemma 1 , stating that $e_{n 1}^{2}, \ldots, e_{n \mu}^{2}$ are the eigenvalues of a tridiagonal matrix with integer entries, follows from certain properties of the Chebychev polynomials. So squared chords have interesting connections with these topics. But what about $s_{n 1}^{2}, \ldots, s_{n m}^{2}$? Are also they the eigenvalues of such a tridiagonal matrix? This question remains open.

The coefficients of the polynomial $\left(x-e_{n 1}^{2}\right) \cdots\left(x-e_{n \mu}^{2}\right)$ form an OEIS sequence, and so do also those of certain related polynomials. What about the coefficients of $\left(x-s_{\mathfrak{n} 1}^{2}\right) \cdots\left(x-s_{\mathfrak{n m}}^{2}\right)$? Do also they form such a sequence? This question remains open, too.

Appendix: Proofs of (6) and (11)

Proof of (6)

$$
\begin{aligned}
& (x-2) P_{m}(x)-P_{m-1}(x) \\
& =(x-2) \sum_{k=0}^{m}(-1)^{m-k}\binom{m+1+k}{2 k+1} x^{k}-\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m+k}{2 k+1} x^{k} \\
& -x^{m+1}+\sum_{k=0}^{m-1}(-1)^{m-k}\binom{m+1+k}{2 k+1} x^{k+1}-2 \sum_{k=0}^{m}(-1)^{m-k}\binom{m+1+k}{2 k+1} x^{k} \\
& \quad-\sum_{k=0}^{m-1}(-1)^{m-1-k}\binom{m+k}{2 k+1} x^{k} \\
& =x^{m+1}+\sum_{k=1}^{m}(-1)^{m+1-k}\binom{m+k}{2 k-1} x^{k}+2 \sum_{k=0}^{m}(-1)^{m+1-k}\binom{m+1+k}{2 k+1} x^{k} \\
& \quad-\sum_{k=0}^{m-1}(-1)^{m+1-k}\binom{m+k}{2 k+1} x^{k} \\
& =x^{m+1}-\left(\binom{2 m}{2 m-1}+2\binom{2 m+1}{2 m+1}\right) x^{m} \\
& \quad+\sum_{k=1}^{m-1}(-1)^{m+1-k}\left(\binom{m+k}{2 k-1}+2\binom{m+1+k}{2 k+1}-\binom{m+k}{2 k+1}\right) x^{k} \\
& \quad+(-1)^{m+1}\left(2\binom{m+1}{1}-\binom{m}{1}\right) \\
& =x^{m+1}-(2 m+2) x^{m}+\sum_{k=1}^{m-1}(-1)^{m+1-k}\binom{m+2+k}{2 k+1} x^{k}+(-1)^{m+1}(m+2) \\
& =\sum_{k=0}^{m+1}(-1)^{m+1-k}\binom{m+1+1+k}{2 k+1} x^{k}=P_{m+1}(x) .
\end{aligned}
$$

Proof of (11)

$$
\begin{aligned}
& (x-3) P_{m}(x)-P_{m-1}(x) \\
& =\cdots=x^{m+1}-\left(\binom{2 m}{2 m-1}+3\binom{2 m+1}{2 m+1}\right) x^{m} \\
& \quad+\sum_{k=1}^{m-1}(-1)^{m+1-k}\left(\binom{m+k}{2 k-1}+3\binom{m+1+k}{2 k+1}-\binom{m+k}{2 k+1}\right) x^{k} \\
& +(-1)^{m+1}\left(3\binom{m+1}{1}-\binom{m}{1}\right) \\
& = \\
& x^{m+1}-(2 m+3) x^{m}+\sum_{k=1}^{m-1}(-1)^{m+1-k} \frac{2 m+3}{m-k+1}\binom{m+1+k}{2 k+1} x^{k} \\
& \quad+(-1)^{m+1}(2 m+3) \\
& = \\
& x^{m+1}+\sum_{k=0}^{m}(-1)^{m+1-k} \frac{2(m+1)+1}{m+1-k}\binom{m+1+k}{2 k+1} x^{k}=Q_{m+1}(x) .
\end{aligned}
$$

References

[1] N. D. Cahill, J. R. D'Errico, J. P. Spence, Complex factorization of the Fibonacci and Lucas numbers, Fibonacci Quart., 41 (2003), 13-19.
[2] H. M. S. Coxeter, Regular Convex Polytopes, Cambridge U. Pr., 1974.
[3] S. Mustonen, Lengths of edges and diagonals and sums of them in regular polygons as roots of algebraic equations, 2013, 44 pp . http://www.survo.fi/papers/Roots2013.pdf
[4] The On-Line Encyclopedia of Integer Sequences (OEIS). http://oeis.org/
[5] D. E. Rutherford, Some continuant determinants arising in physics and chemistry, I, Proc. Royal Soc. Edinburgh, 62A (1947), 229-236.
[6] D. Y. Savio, E. R. Suryanarayan, Chebychev polynomials and regular polygons, Amer. Math. Monthly, 100 (1993), 657-661.
[7] E. W. Weisstein, Sine, MathWorld $-A$ Wolfram Web Resource. http://mathworld.wolfram.com/Sine.html
[8] E. W. Weisstein, Tangent, MathWorld -A Wolfram Web Resource. http://mathworld.wolfram.com/Tangent.html
[9] А. М. Яглом, И. М. Яглом, Элементарный вывод формул Валлиса, Лейбница и Эйлера для числа π, Успехи Матем. Наук, 8 (1953), 181-187. (A. M. Yaglom, I. M. Yaglom, An elementary derivation of the Wallis, Leibniz and Euler formulas for the number π, Uspekhi Matem. Nauk, 8 (1953), 181-187.)
[10] http://functions.wolfram.com/ElementaryFunctions/Cot/27/01/ 0002/

[^0]: 2010 Mathematics Subject Classification: 11B83, 11C08, 15B36, 51M20
 Key words and phrases: polynomial, regular polygon, eigenvalue

