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Abstract. Let Gn be a regular n-gon with unit circumradius, and m =
bn
2
c, µ = bn−1

2
c. Let the edges and diagonals of Gn be en1 < · · · < enm.

We compute the coefficients of the polynomial

(x− e2n1) · · · (x− e2nµ).

They appear to form a well-known integer sequence, and we study certain
related sequences, too. We also compute the coefficients of the polynomial

(x− s2n1) · · · (x− s2nm),

where

sni = cot
(2i− 1)π

2n
, i = 1, . . . ,m.

We interpret sn1 as the sum of all individual edges and diagonals of Gn
divided by n. We also discuss the interpretation of sn2, . . . , snm, and
present a conjecture on expressing sn1, . . . , snm using en1, . . . , enm.
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1 Introduction

Throughout, Gn is a regular n-gon with unit circumradius, and

m =
⌊n
2

⌋
, µ =

⌊
n− 1

2

⌋
.

Long time ago Kepler observed [2] that the squares of the edge and diagonals
of G7 are the zeros of the polynomial x3 − 7x2 + 14x− 7. This raises a general
question: Are the squares of (the lengths of) the edge and diagonals of Gn,
excluding the diameter, the zeros of a monic polynomial of degree µ with
integer coefficients?

Yes, they are. This follows from Savio’s and Suruyanarayan’s [6] results,
which, however, do not give the polynomial explicitly. We will do it in Sec-
tion 2. A natural further question concerns the edge and diagonals themselves,
instead of their squares. They are not zeros of a polynomial described above,
but we will in Section 3 see that the squared sum of all individual edges and
diagonals is the largest zero of a monic polynomial of degree m with inte-
ger coefficients. We will study geometric interpretation of the square roots
of the other zeros in Section 4. In Section 5, we will present a conjecture on
expressing these square roots as simple linear combinations of the edge and di-
agonals. We will in Section 6 notify that the coefficients of the first-mentioned
polynomial form an OEIS [4] sequence, and also study OEIS sequences corre-
sponding to certain related polynomials. Finally, we will complete our paper
with conclusions and further questions in Section 7.

2 Squared chords

Let (the lengths of) the edge and diagonals of Gn be en1 < · · · < enm. Call
them (the lengths of) the chords. Then

enk = 2 sin
kπ

n
, k = 1, . . . ,m.

Our problem is to find the coefficients amk and bmk of the polynomials

Am(x) = (x− e2n+2,1) · · · (x− e2n+2,m) =
xm + am,m−1x

m−1 + · · ·+ am1x+ am0, (1)

where n is even, and

Bm(x) = (x− e2n1) · · · (x− e2nm) = xm + bm,m−1x
m−1 + · · ·+ bm1x+ bm0, (2)
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where n is odd. We solve it in two theorems. Mustonen [3] found them exper-
imentally and sketched their proofs.

Let tridiagm(x, y) denote the symmetric tridiagonal m×m matrix with all
main diagonal entries x and first super- and subdiagonal entries y. For m ≥ 2,
define

Am = tridiagm(2, 1)

and

Bm is as Am but the (m,m) entry equals 3.

Also define A1 = (2) and B1 = (3). Denote by spec the (multi)set of eigenval-
ues.

Lemma 1 For all m ≥ 1,

specAm =
{
4 sin2

kπ

n+ 2

∣∣∣k = 1, . . . ,m
}
= {e2n+2,1, . . . , e

2
n+2,m}, (3)

specBm =
{
4 sin2

kπ

n

∣∣∣k = 1, . . . ,m
}
= {e2n1, . . . , e

2
nm}.

Proof. See [1, 5, 6]. �

Theorem 1 In (1),

amk = (−1)m−k

(
m+ 1+ k

2k+ 1

)
. (4)

Proof. Denoting

Pm(x) = x
m +

m−1∑
k=0

(−1)m−k

(
m+ 1+ k

2k+ 1

)
xk,

our claim is that

Pm(x) = Am(x) (5)

for all m ≥ 1. Expanding det (xIm −Am) along the last row, we have

Am+1(x) = (x− 2)Am(x) −Am−1(x)

for all m ≥ 2. Since
P1(x) = x− 2 = A1(x)
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and
P2(x) = x

2 − 4x+ 3 = A2(x),

the claim (5) follows by showing that

Pm+1(x) = (x− 2)Pm(x) − Pm−1(x) (6)

for all m ≥ 2. Mustonen [3] did it by using Mathematica. We will do the
computations algebraically in the appendix. �

The formula (4) yields amm = 1, consistently with the coefficient of xm

in (1). It also allows to define a00 = 1. The polynomial

Ãm+1(x) = (x− 4)Am(x) = x
m+1 + αm+1,mx

m + · · ·+ αm+1,1x+ αm+1,0 (7)

has e2n+2,m+1 = 4 as the additional zero. By (4),

αm+1,k = (−1)m−k+1

((
m+ k

2k− 1

)
+ 4

(
m+ 1+ k

2k+ 1

))
. (8)

(We define
(
n
k

)
= 0 if k < 0.)

Theorem 2 In (2),

bmk = (−1)m−k 2m+ 1

m− k

(
m+ k

2k+ 1

)
= (−1)m−k

((
m+ 1+ k

2k+ 1

)
+

(
m+ k

2k+ 1

))
. (9)

Proof. The second equation follows from trivial computation. To show the
first, denote

Qm(x) = x
m +

m−1∑
k=0

(−1)m−k 2m+ 1

m− k

(
m+ k

2k+ 1

)
xk

and claim that

Qm(x) = Bm(x) (10)

for all m ≥ 1. Expanding det (xIm −Bm), we have

Bm+1(x) = (x− 3)Am(x) −Am−1(x)

for all m ≥ 2. Since
Q1(x) = x− 3 = B1(x)



182 S. Mustonen, P. Haukkanen, J. Merikoski

and

Q2(x) = x
2 − 5x+ 5 = B2(x),

the claim (10) follows by showing that

Qm+1(x) = (x− 3)Pm(x) − Pm−1(x) (11)

for all m ≥ 2. Mustonen [3] did also this by using Mathematica, and we will
do the computations algebraically in the appendix. �

For k = m, the first expression in (9) is undefined but the second is defined.
(We define

(
n
k

)
= 0 if n < k.) It gives bmm = 1, the coefficient of xm in (2). It

also allows to define b00 = 1.

Corollary 1 The sum of all individual squared chords of Gn is n2. Their
product is nn.

Proof. By Theorems 1 and 2 (or by [7, Eqs. (20) and (24)]), we obtain

e22m,1 + · · ·+ e22m,m−1 = −am−1,m−2 = 2(m− 1),

e22m+1,1 + · · ·+ e22m+1,m = −bm,m−1 = 2m+ 1,

and

e22m,1 · · · e22m,m−1 = (−1)mam−1,0 = m,

e22m+1,1 · · · e22m+1,m = (−1)mbm0 = 2m+ 1.

Denoting by Σn the sum and by Πn the product of all individual squared
chords of Gn, we therefore have

Σ2m = 2m · 2(m− 1) +m · 4 = (2m)2,

Σ2m+1 = (2m+ 1)(2m+ 1) = (2m+ 1)2,

and

Π2m = m2m4m = (2m)2m, Π2m+1 = (2m+ 1)2m+1.

�
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3 Sum of chords

The sum of all individual chords of Gn is

Sn = nsn,

where
sn = en1 + · · ·+ en,m−1 +

1
2enm = en1 + · · ·+ en,m−1 + 1

if n is even, and
sn = en1 + · · ·+ enm

if n is odd, is the sum of different (lengths of) chords but the diameter is
halved.

Theorem 3 For all n ≥ 3,
sn = cot

π

2n
.

Proof. We have [7, Eq. (21)]

n−1∑
k=1

sin
kπ

n
= cot

π

2n
. (12)

If n is even, this implies

sn =

m−1∑
k=1

2 sin
kπ

n
+
1

2
· 2 =

m−1∑
k=1

sin
kπ

n
+ 1+

2m−1∑
k=m+1

sin
kπ

n
=

2m−1∑
k=1

sin
kπ

n
= cot

π

2n
.

If n is odd, then

sn =

m∑
k=1

2 sin
kπ

n
=

m∑
k=1

sin
kπ

n
+

2m∑
k=m+1

sin
kπ

n
=

2m∑
k=1

sin
kπ

n
= cot

π

2n
.

�

Is sn a zero of a monic polynomial of degree m with integer coefficients? Yes
for s4 = cot π8 = 1+

√
2; it is a zero of x2−2x−1. On the other hand, it is easy

to see that s5 = cot π
10 =

√
5+ 2

√
5 is not a zero of such a polynomial. But
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s25 = 5+ 2
√
5 is a zero of x2− 10x+ 5, and the other zero is 5− 2

√
5 = cot2 3π10 .

Also s24 = 3+ 2
√
2 has this property: it is a zero of x2 − 6x+ 1, and the other

zero is 3− 2
√
2 = cot2 3π8 .

Generally, denoting

sni = cot
(2i− 1)π

2n
, i = 1, . . . ,m,

this motivates us to study for even n the coefficients of the polynomial

Um(x) = (x− s2n1) · · · (x− s2nm) = xm + um,m−1x
m−1 + · · ·+ um1x+ um0, (13)

and for odd n those of

Vm(x) = (x− s2n1) · · · (x− s2nm) = xm + vm,m−1x
m−1 + · · ·+ vm1x+ vm0. (14)

We will see that they all are integers. The largest zero is s2n = s2n1.

Mustonen [3] found the following theorem experimentally and also presented
its proof. Yaglom and Yaglom [9, Eqs. (7) and (8)] formulated (16) differently.

Theorem 4 In (13),

umk = (−1)k
(
n

2k

)
. (15)

In (14),

vmk = (−1)k
(

n

2k+ 1

)
. (16)

Proof. We have [10]

cotnt =

∑m
k=0(−1)

k
(
n
2k

)
cotn−2k t∑m

k=0(−1)
k
(
n

2k+1

)
cotn−2k−1 t

. (17)

Denote

ti =
(2i− 1)π

2n
, i = 1, . . . ,m.

Since cotnti = 0, (17) yields

m∑
k=0

(−1)k
(
n

2k

)
cotn−2k ti = 0. (18)
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First assume n even. The polynomial

Ũm(x) =

m∑
k=0

(−1)m−k

(
n

2k

)
xk

is monic and has degree m. For all i = 1, . . . ,m,

Ũm(s
2
ni) =

m∑
k=0

(−1)m−k

(
2m

2k

)
s2kni =

m∑
l=0

(−1)l
(

2m

2m− 2l

)
s2m−2l
ni

=

m∑
l=0

(−1)l
(
2m

2l

)
s2m−2l
ni =

m∑
l=0

(−1)l
(
n

2l

)
cotn−2l ti = 0

by (18). Hence

Ũm(x) = (x− s2n1) · · · (x− s2nm) = Um(x),

and (15) follows.

Second, assume n odd. The polynomial

Ṽm(x) =

m∑
k=0

(−1)m−k

(
n

2k+ 1

)
xk

is monic and has degree m. For all i = 1, . . . ,m,

Ṽm(s
2
ni) =

m∑
k=0

(−1)m−k

(
2m+ 1

2k+ 1

)
s2kni =

m∑
l=0

(−1)l
(

2m+ 1

2m− 2l+ 1

)
s2m−2l
ni =

s−1ni

m∑
l=0

(−1)l
(

2m+ 1

2m− 2l+ 1

)
s2m+1−2l
ni = s−1ni

m∑
l=0

(−1)l
(
2m+ 1

2l

)
s2m+1−2l
ni

= s−1ni

m∑
l=0

(−1)l
(
n

2l

)
cotn−2l ti = 0,

again by (18). Hence

Ṽm(x) = (x− s2n1) · · · (x− s2nm) = Vm(x),

and (16) follows. �
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Corollary 2 The number s2n is the largest zero of the polynomial

xm + um,m−1nx
m−1 + · · ·+ um1nm−1x+ um0n

m

if n is even, and that of

xm + vm,m−1nx
m−1 + · · ·+ vm1nm−1x+ vm0n

m

if n is odd.

4 Interpreting sn,m−k+1, k = 1, . . . , bn−1
3
c, n odd

The zeros of Am(x) and Bm(x) describe the squared chords of G2m+2 and
G2m+1, respectively, excluding the diameter. The largest zero of Um(x), s

2
2m,1 =

s22m, and that of Vm(x), s
2
2m+1,1 = s22m+1, describe the squared sum of chords

but halving the diameter. In other words, the sum of all individual chords
of Gn is divided by n and the result is squared.

What about the other zeros?

Let the vertices of Gn be P0, . . . , Pn−1, where Pk = (cos kπn , sin
kπ
n ). Then

enk = P0Pk = 2 sin kπ
n , k = 1, . . . ,m. Since P0Pn−k = P0Pk, we define en,n−k =

enk, k = 1, . . . ,m.

Fix n and denote ek = enk for brevity. Assume that 3k < n; i.e., k < n
3 .

Then the line segments P0P2k and PkPn−k intersect; let Qk be their intersection
point and denote xk = P0Qk. Because 4QkP0Pk ∼ 4QkP2kPn−k, we have

xk
e2k − xk

=
ek
e3k
.

Hence

xk =
eke2k
ek + e3k

=
2 sin kπ

n sin 2kπ
n

sin kπ
n + sin 3kπ

n

=

2 sin kπ
n sin 2kπ

n

sin( 2kπn − kπ
n ) + sin( 2kπn + kπ

n )
=

sin kπ
n sin 2kπ

n

sin 2kπ
n cos kπn

= tan
kπ

n
.

If n is odd, then

tan
kπ

n
= cot

(π
2
−

kπ

2m+ 1

)
= cot

[2(m− k) + 1]π

2n
= sn,m−k+1.



Polynomials associated with regular polygons 187

Thus sn,m−k+1 = P0Qk, k = 1, . . . , bn−13 c. In other words, the bn−13 c smallest

zeros of Vm(x) are the squared line segments P0Qk, k = 1, . . . , bn−13 c. Musto-
nen [3] found this experimentally. The largest zero is already interpreted, but
the interpretation of the rest of zeros remains open. For some experimental
observations, see [3]. Interpretation of the zeros of Um(x), except the largest,
remains open, too.

5 Expressing sn1, . . . , snm using en1, . . . , enm

Mustonen’s [3] experiments make conjecture that, given n, there are numbers

λ
(i)
nk ∈ {0,±1}, i, k = 1, . . . ,m, such that

sni = λ
(i)
n1en1 + · · ·+ λ

(i)
n,m−1en,m−1 + λ

(i)
nme

′
nm, i = 1, . . . ,m,

where

e ′nm =

{
1
2enm if n is even,
enm if n is odd.

In other words,

cot
(2i− 1)π

2n
= 2
[
λ
(i)
n1 sin

π

n
+ · · ·+ λ(i)n,m−1 sin

(m− 1)π

n
+ θnλ

(i)
nm sin

mπ

n

]
,

where

θn =

{
1
2 if n is even,
1 if n is odd.

This is true by (12) when i = 1 (sn1 = sn, λ
(1)
n1 = · · · = λ(1)nm = 1) but remains

generally open.

For example, let n = 15. Denoting sk = s15,k and ek = e15,k for brevity, we
have [3, p. 17]

s1 = e1+ e2+ e3+ e4+ e5+ e6+ e7
s2 = e3+ e6
s3 = e5
s4 = e1− e2+ e3− e4+ e5− e6+ e7
s5 = −e3+ e6
s6 = e1− e2+ e3+ e4− e5+ e6− e7
s7 = e1+ e2− e3− e4+ e5+ e6− e7.
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We study the zero coefficients in general. If and only if d = gcd(n, 2i−1) > 1,
then Gn ”inherits” the chord

sni = cot
(2i− 1)π

2n

from Gd. Then the chords of Gd are enough to express sni, and the coefficients
of the remaining chords are zero. Indeed, in our example,

s2 = s15,2 = cot
3π

30
= cot

π

10
= 2
(

sin
π

5
+ sin

2π

5

)
,

s3 = s15,3 = cot
5π

30
= cot

π

6
= 2 sin

π

3
,

s5 = s15,5 = cot
9π

30
= cot

3π

10
= 2
(
− sin

π

5
+ sin

2π

5

)
,

showing that s3 is ”inherited” from G3, and s2 and s5 from G5.

So we conjecture additionally that if and only if n is a prime or a power

of 2, then each λ
(i)
nk ∈ {±1}. Mustonen [3] gives also other experimental results

and conjectures about the structure of the three-dimensional array (λ
(i)
nk), and

presents an efficient algorithm to compute these numbers.

6 Connections with OEIS sequences

The (lexicographically ordered) sequence (amk) is A053122 in OEIS. Its first
six terms are a00 = 1, a10 = −2, a11 = 1, a20 = 3, a21 = −4, a22 = 1.

The OEIS sequence A132460 consists of the numbers

tn0 = 1, n = 0, 1, 2, . . . ,

tnk = (−1)k(

(
n− k

k

)
+

(
n− k− 1

k− 1

)
), n = 2, 3, . . . , k = 1, . . . ,m.

The first six terms of its subsequence corresponding to odd values of n are
t10 = 1 = b00, t30 = 1 = b11, t31 = −3 = b10, t50 = 1 = b22, t51 = −5 = b21,
t52 = 5 = b20. In general, bmk = t2m+1,m−k.

Also the characteristic polynomials of certain other tridiagonal matrices
have connections with OEIS sequences. We study two of them.

Let tridiag(a,b, c) denote the tridiagonal matrix with main diagonal, sub-
diagonal and superdiagonal entries those of vectors a, b and c, respectively,
and denote x(k) = x, . . . , x, k copies. For m ≥ 3, define

Cm = tridiag ((2(m)), ((−1)(m−2),−2), (−2, (−1)(m−2)))
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and

C2 =

(
2 −2
−2 2

)
, C1 = (2).

For m ≥ 1, consider the polynomial

Cm(x) = det (xIm −Cm) = x
m + cm,m−1x

m−1 + · · ·+ cm1x+ cm0

and define C0(x) = 1, c00 = cmm = 1. The sequence A140882 consists of
the numbers (−1)mcmk. Since C0(x) = 1, C1(x) = x − 2, C2(x) = x2 − 4x,
C3(x) = x3 − 6x2 + 8x, its first ten terms are 1, 2,−1, 0,−4, 1, 0,−8, 6,−1, as
listed in [4].

We have xÃ1(x) = x2 − 4x = C2(x) and xÃ2(x) = x3 − 6x2 + 8x = C3(x),
and generally

Cm+1(x) = xÃm(x) (19)

for all m ≥ 1. This can be proved similarly to the proofs of Theorems 1 and 2.
By (8), a formula for A140882 is then obtained. By (19), (7) and (3),

specCm = specAm−2 ∪ {0, 4} =
{
4 sin2

kπ

2m− 2

∣∣∣k = 0, . . . ,m− 1
}

for m ≥ 3.
Finally, the sequence A136672 motivates us to study the polynomial

Fm+1(x) = (x− 2)Am(x) = x
m+1 + fm+1,mx

m + · · ·+ fm+1,1x+ fm+1,0 (20)

and its connections with the matrix Dm, defined by

Dm = tridiag((2(m)), ((−1)(m−2), 0), ((−1)(m−1)))

if m ≥ 3, and

D2 =

(
2 −1
0 2

)
, D1 = (2).

By Theorem 1,

fm+1,k = (−1)m−k+1(

(
m+ k

2k− 1

)
+ 2

(
m+ 1+ k

2k+ 1

)
). (21)

For m ≥ 1, consider the polynomial

Dm(x) = det (xIm −Dm) = x
m + dm,m−1x

m−1 + · · ·+ dm1x+ dm0



190 S. Mustonen, P. Haukkanen, J. Merikoski

and define D0(x) = 1, d00 = dmm = 1. The sequence A136672 consists of the
numbers (−1)mdmk. We have D0(x) = 1, D1(x) = x− 2, D2(x) = x

2 − 4x+ 4,
D3(x) = x

3−6x2+11x−6. So its first ten terms are 1, 2,−1, 4,−4, 1, 6,−11, 6,−1,
as listed in [4].

Since F1(x) = x − 2 = D1(x), F2(x) = x2 − 4x + 4 = D2(x), and F3(x) =
x3 − 6x2 + 11x− 6 = D3(x), it seems that

Dm(x) = Fm(x) (22)

for all m ≥ 1. This can be proved similarly to the previous proofs. By (21), a
formula for A136672 follows. By (22), (20) and (3),

specDm = specAm−1 ∪ {2} =
{
4 sin2

kπ

2m

∣∣∣ k = 1, . . . ,m− 1
}
∪ {2}

for m ≥ 2.

7 Conclusions and further questions

The squared chords of Gn, excluding the diameter, are the zeros of a monic
polynomial of degree µ with integer coefficients. Including the diameter, the
degree is m.

The squared sum of all individual chords is the largest zero of a monic
polynomial of degree m with integer coefficients. An equivalent fact is that
the squared sum of all different (lengths of) chords but the diameter is halved,
is a zero of such a polynomial. The zeros of this polynomial seem to be linear
combinations of the chords with all coefficients 0 or ±1.

Lemma 1, stating that e2n1, . . . , e
2
nµ are the eigenvalues of a tridiagonal ma-

trix with integer entries, follows from certain properties of the Chebychev
polynomials. So squared chords have interesting connections with these top-
ics. But what about s2n1, . . . , s

2
nm? Are also they the eigenvalues of such a

tridiagonal matrix? This question remains open.

The coefficients of the polynomial (x − e2n1) · · · (x − e2nµ) form an OEIS se-
quence, and so do also those of certain related polynomials. What about the
coefficients of (x− s2n1) · · · (x− s2nm)? Do also they form such a sequence? This
question remains open, too.
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Appendix: Proofs of (6) and (11)

Proof of (6)

(x− 2)Pm(x) − Pm−1(x)

= (x− 2)

m∑
k=0

(−1)m−k

(
m+ 1+ k

2k+ 1

)
xk −

m−1∑
k=0

(−1)m−1−k

(
m+ k

2k+ 1

)
xk

− xm+1 +

m−1∑
k=0

(−1)m−k

(
m+ 1+ k

2k+ 1

)
xk+1 − 2

m∑
k=0

(−1)m−k

(
m+ 1+ k

2k+ 1

)
xk

−

m−1∑
k=0

(−1)m−1−k

(
m+ k

2k+ 1

)
xk

= xm+1 +

m∑
k=1

(−1)m+1−k

(
m+ k

2k− 1

)
xk + 2

m∑
k=0

(−1)m+1−k

(
m+ 1+ k

2k+ 1

)
xk

−

m−1∑
k=0

(−1)m+1−k

(
m+ k

2k+ 1

)
xk

= xm+1 −

((
2m

2m− 1

)
+ 2

(
2m+ 1

2m+ 1

))
xm

+

m−1∑
k=1

(−1)m+1−k

((
m+ k

2k− 1

)
+ 2

(
m+ 1+ k

2k+ 1

)
−

(
m+ k

2k+ 1

))
xk

+ (−1)m+1

(
2

(
m+ 1

1

)
−

(
m

1

))
= xm+1 − (2m+ 2)xm +

m−1∑
k=1

(−1)m+1−k

(
m+ 2+ k

2k+ 1

)
xk + (−1)m+1(m+ 2)

=

m+1∑
k=0

(−1)m+1−k

(
m+ 1+ 1+ k

2k+ 1

)
xk = Pm+1(x).
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Proof of (11)

(x− 3)Pm(x) − Pm−1(x)

= · · · = xm+1 −

((
2m

2m− 1

)
+ 3

(
2m+ 1

2m+ 1

))
xm

+

m−1∑
k=1

(−1)m+1−k

((
m+ k

2k− 1

)
+ 3

(
m+ 1+ k

2k+ 1

)
−

(
m+ k

2k+ 1

))
xk

+ (−1)m+1

(
3

(
m+ 1

1

)
−

(
m

1

))
= xm+1 − (2m+ 3)xm +

m−1∑
k=1

(−1)m+1−k 2m+ 3

m− k+ 1

(
m+ 1+ k

2k+ 1

)
xk

+ (−1)m+1(2m+ 3)

= xm+1 +

m∑
k=0

(−1)m+1−k 2(m+ 1) + 1

m+ 1− k

(
m+ 1+ k

2k+ 1

)
xk = Qm+1(x).
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