
’SIMPLE CONSTRUCTIONS’ OF REGULAR N-SIDED

POLYGONS AT ANY GIVEN ACCURACY

SEPPO MUSTONEN

Abstract. Consider n-sided polygons inscribed in a circle. The obvious fact
that among all such polygons the regular one has the greatest area is proved by

a trivial geometric argument. This result leads to an sequence of simple con-
structions where an originally irregular polygon grows towards a regular one at

any given accuracy. It is also possible to improve approximate constructions
for regular polygons like a heptagon where a traditional ruler and compass

construction is impossible. Corresponding results are shown also for circum-

scribed polygons. The constructions are illustrated by ’live’ demonstrations
created as applications the Survo system [5].

Date: 30 April 2013.

Figure 1. Inscribed and circuscribed regular heptagons
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1. Introduction

When studying mathematics in the University of Helsinki, I attended a course on
”calculus of several variables” in 1959. The course was based on a brilliant textbook
by Ernst Lindelöf. In a chapter related to extreme values of functions of several
variables, one of exercises was: ”Prove that among all n-sided polygons located
inside a circle the regular one has the largest area.” It was obvious that this exercise
was meant to be solved according to methods presented in the textbook. However,
I got an idea that this problem does not necessarily require any information about
”higher analysis”. My solution was based on a direct observation that if the largest
insribed n-sided polygon were irregular, its area could be increased at a pair of
unequal adjacent sides of the polygon by moving the corresponding vertex to the
middle of the arc of between the utmost vertices of the pair of sides.

Before going to the main topic, the approach used in Survo graphics is illustrated
as Fig. 1 and a setup created for making it.

____________________________________________________________________

1 *SAVE N_GON_RAW / n-gons by direct PLOT schemes

2 *LOAD INDEX

3 * *GLOBAL* n=7 pi=3.141592653589793

4 *

5 *SCALE=-1.2,0,1.2 SIZE=1200,1200 XDIV=1,28,1 YDIV=1,28,1 HEADER=

6 *XLABEL= YLABEL= FRAME=3

7 * /ACTIVATE + / This command activates all commands with ’+’

8 *................................................................

9 *Circle with unit radius:

10+ PLOT X(t)=R*cos(t),Y(t)=R*sin(t) / DEVICE=PS,Circle1.ps R=1

11*t=[line_width(0.24)][RED],0,2*pi,pi/60

12*................................................................

13*Inscribed polygon: (using step 2*pi/n in plotting of a ’circle’)

14+ PLOT X(t)=R*cos(t),Y(t)=R*sin(t) / DEVICE=PS,PolygonI1.ps R=1

15*t=[line_width(0.48)],0,2*pi,2*pi/n

16*................................................................

17*Circumscribed polygon:

18+ PLOT X(t)=R*cos(t),Y(t)=R*sin(t) / DEVICE=PS,PolygonC1.ps

19*t=[line_width(0.48)],-pi/n,2*pi-pi/n,2*pi/n

20*Actually plotted as an inscribed polygon for an invisible circle

21*with radius R=1/cos(pi/n)

22*Phase shift by -pi/n so that tangent points coincide with vertices

23*of the inscribed polygon

24*................................................................

25*Combining PostScript files generated by PLOT commands:

26+ EPS JOIN Pict1,Circle1,PolygonI1,PolygonC1

27+ EPS Pict1.ps Pict1.eps / convert to eps format

28*

____________________________________________________________________

Above is a snapshot from a Survo edit field containing all ingredients for making
Fig. 1.
It is divided into 5 subfields separated by dotted lines. The first one is a global
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subfield (see *GLOBAL* on line 3) giving common background information for other
subfields. For example, n=7 on the same line gives the number of vertices of poly-
gons to be drawn; thus this is a general setup for plotting any n-gons and any
interer, say 3,4,... may be selected instead of 7.
When the /ACTIVATE + command on line 7 is activated, it causes all commands
having ’+’ in the control column (before ordinary text of a line) to be activated and
then the PLOT commands on lines 10,14, and 18 draw a circle, an inscribed heptagon,
and a circumscribed heptagon, respectively. These graphs are not shown immedi-
ately but saved in PostScript files Circle1.ps, PolygonI1.ps, and PolygonC1.ps

as indicated by DEVICE specifications in each subfield.
Finally, these PostScript files are combined and converted into eps format by com-
mands on lines 26,27.
Thus all this takes place automatically as a result of a single activation and the
contents of the file Pict1.eps is shown in Fig. 1 by ordinary means of LATEX.

The figures related to geometric constructions on the following pages are created
by using the GEOM program module [3] of the Survo system [5].
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2. Inscribed polygons

O

A

B

D D’

C
C ’

Figure 2

The fact that the regular n-sided polygon has the largest area is proved as fol-
lows:
Assume on the contrary that some non-regular n-gon has the largest area.
Then it must have at least two adjacent sides of different length. Consider the tri-
angle consisting of those sides and the chord between their furthest end points, say
A and B (in Fig. 2) Let the common point of sides be C and draw a perpendicular
line from C to AB and let it meet AB at point D. Denote the length of the line
segment CD by h and the length of AB by a. Then the area of the triangle is ah/2.
Next draw a perpendicular for AB from the midpoint (say D′) of AB and let C ′

be the point where it meets the arc ACB. Denote length of C ′D′ by h′. Since the
adjacent sides were unequal, h′ is longer than h. If the vertex C is moved to C ′, the
area of the triangle (now ah′/2) increases and so does the total area on the n-gon.
Thus no irregular n-gon cannot have the largest area.

It is also interesting to see how much the area of the n-gon is grown by the above
’smoothing’ construction. In Fig. 3 let ∠BOC ′ = α and ∠COC ′ = β. Then we
have ∠BAC = (α + β)/2 as an inscribed angle corresponding to the central angle
∠BOC = α + β and similarly ∠ABC = (α − β)/2. The length of AB is 2 sin(α).
The area for a triangle with angles x, y and side a between them is given by the
ASA formula

(1) Area(x, y, a) = tan(x) tan(y)/(tan(x) + tan(y))a2/2.

Then the area |ABC| is obtained from this formula by selecting x = (α + β)/2,
y = (α − β)/2, and a = 2 sin(α). Similarly, the area |ABC ′| is obtained from (1)
by setting β = 0, i.e. by selecting x = y = α/2 and a = 2 sin(α).

The difference din(α, β) = |ABC ′| − |ABC| is computed, for example, by using
Mathematica from Survo as follows:
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____________________________________________________________________

*Saving Mathematica code in a text file:

*SAVEW CUR+1,E,K.TXT

*Area[x_,y_,z_]:=Tan[x]*Tan[y]/(Tan[x]+Tan[y])*z^2/2;

*k1=Area[(a+b)/2,(a-b)/2,2*Sin[a]];

*k2=Area[a/2,a/2,2*Sin[a]];

*InputForm[Simplify[k2-k1]]

E

*Calling Mathematica to execute the code by a Survo macro /MATH:

*/MATH K.TXT

*In[2]:= Area[x_,y_,z_]:=Tan[x]*Tan[y]/(Tan[x]+Tan[y])*z^2/2;

*In[3]:= k1=Area[(a+b)/2,(a-b)/2,2*Sin[a]];

*In[4]:= k2=Area[a/2,a/2,2*Sin[a]];

*In[5]:= InputForm[Simplify[k2-k1]]

*Out[5]//InputForm= 2*Sin[a]*Sin[b/2]^2

*

____________________________________________________________________

Thus

(2) din(α, β) = 2 sin(α) sin(β/2)2

and since α is acute, din(α, β) is positive when β > 0.
By using this splitting construction repeatedly, any inscribed irregular n-gon can

be grown towards a regular n-gon. To demonstrate this method, I have created a
Survo macro, sucro /NGON-IN.
For example, activation of /NGON-IN 7,20130408 in the Survo edit field leads to
working with a heptagon (7-gon) by starting from a random inscribed irregular
heptagon determined by a seed number (in this case 20130408) for a random number
generator. The vertices will then be scattered randomly over the circumference.
/NGON-IN applies the splitting construction to the vertex which gives the maximum
growth for area of the polygon according to the formula (2). At any step it is
displayed in percentages how close the area of the current polygon is to that of the
regular case.
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A live demonstration of this example can be seen as a flash application
http://www.survo.fi/flash/heptagon.html

A series of snapshots is shown in Fig. 4.
The actual growth of the area and the vertex moved in the current round are

presented in the following table:

____________________________________________________________________

Round Area Growth Vertex

0 2.34224245695511 - -

1 2.646652520669050 0.304410063713938 1

2 2.662569353150985 0.015916832481935 2

3 2.691783224533356 0.029213871382371 3

4 2.700487702444515 0.008704477911159 2

5 2.713372525909583 0.012884823465068 1

6 2.720503335643904 0.007130809734321 5

7 2.726722085404965 0.006218749761061 4

____________________________________________________________________

The growth typically becomes smaller in consecutive steps but not necessarily.
For example, in the step from Round 2 to Round 3 it is larger than in the previous
one, since then it becomes possible better than earlier to extend a short side ’around
9 o’clock’. In the previous round the vertex ’around 11 o’clock’ has been moved
further away from that short side.
It is obvious that in this way an approximation of a regular n-gon can be reached
at any given accuracy by a finite number of steps.
The details about /NGON-IN are described in Appendix (not ready).

http://www.survo.fi/flash/heptagon.html
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Figure 4

3. Circumscribed polygons

The fact that the regular n-sided polygon has the smallest area is proved as
follows:
Assume on the contrary that some non-regular n-gon has the smallest area.
Then it must have at least two adjacent vertices corresponding to different angles
of corners like D and E in Fig. 5.
There C is a tangent point of the side DE of the n-gon. Let A and B be tangent
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points of the neighbour sides of the n-gon. In this case we have AE < BD. It
will be seen that area of n-gon is diminished by drawing a bisector OC ′ of ∠AOB
so that the side DE is replaced by D′E′ going through a new tangent point C ′.
Similarly AE is replaced by AE′ and BD by BD′. Let F be the intersection point
of DE and D′E′.
In the new situation triangle ∆FDD′ is replaced by ∆FEE′ as parts of the area
inside the n-gon. Thus it should be shown that |FD′D| > |FEE′|.
Denote ∠BOC ′ = α and ∠C ′OC = β and observe that

(3) 0 < β < α < π/2.

Then we have ∠AOC = α−β and, due to orthogonalities, ∠FD′D = α, ∠FEE′ =
α − β, and ∠DFD′ = ∠EFE′ = β.
Now extend ∆FEE′ so that G is a point where line D′E′ and the line from E
intersect so that ∠GEE′ = β. Then ∆FEG ∼= ∆FD′D. Now
EF = EC + CF = tan((α − β)/2) + tan(β/2) and
D′F = D′C ′ + C ′F = tan(α/2) + tan(β/2)
which implies that D′F > EF and |FD′D| > |FEG| > |FEE′|.
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The difference dout(α, β) = |FD′D|− |FEE′| is obtained, again, by using Math-
ematica from Survo as follows:

____________________________________________________________________

*Saving Mathematica code in a text file:

*SAVEW CUR+1,E,K.TXT

*area[x_,y_,z_] := Tan[x]*Tan[y]/(Tan[x]+Tan[y])*z^2/2;

*k1=area[a,b,Tan[a/2]+Tan[b/2]];

*k2=area[a-b,b,Tan[(a-b)/2]+Tan[b/2]];

*InputForm[Simplify[k1 - k2]]

E

*Calling Mathematica to execute the code by a Survo macro /MATH:

*/MATH K.TXT

*In[2]:= area[x_,y_,z_] := Tan[x]*Tan[y]/(Tan[x]+Tan[y])*z^2/2;

*In[3]:= k1=area[a,b,Tan[a/2]+Tan[b/2]];

*In[4]:= k2=area[a-b,b,Tan[(a-b)/2]+Tan[b/2]];

*In[5]:= InputForm[Simplify[k1 - k2]]

*Out[5]//InputForm= 2*Sec[(a - b)/2]*Sec[(a + b)/2]*Sin[b/2]^2*Tan[a/2]

*

____________________________________________________________________

Thus the area is diminished by

(4) dout(α, β) = 2
sin(β/2)2 tan(α/2)

cos((α − β)/2) cos((α + β)/2)

which is positive according to (3).
By using this splitting construction repeatedly, any circumscribed irregular n-

gon can be reduced towards a regular n-gon. To demonstrate this method, I have
created a Survo macro, sucro /NGON-OUT.

For example, activation of /NGON-OUT 5,20130322 in the Survo edit field leads to
working with a pentagon (5-gon) by starting from a random circumscribed irregular
pentagon determined by a seed number (in this case 20130322) for a random number
generator. In this case the tangent points of the sides of the polygon will be
scattered randomly over the circumference.
/NGON-OUT applies the splitting construction to the vertex which gives the maximum
decrease for the area of the polygon according to the formula (4). At any step it is
displayed in percentages how close the area of the current polygon is to that of the
regular case.
A live demonstration of this example can be seen as a flash application
http://www.survo.fi/flash/pentagon.html

A series of snapshots is shown in Fig. 6.

http://www.survo.fi/flash/pentagon.html
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Figure 6

It is obvious that in this way an approximation of a regular n-gon can be reached
at any given accuracy by a finite number of steps.
The details about /NGON-OUT are described in Appendix (not ready).



S.Mustonen: ’Simple constructions’ of regular n-sided polygons at any given accuracy 11

O

P1

A

B

Q

Figure 7

4. Improving approximate constructions

It is also possible to improve approximate constructions for regular polygons like
a heptagon where a traditional ruler and compass construction is impossible. In the
history of mathematics many ruler and compass constructions have been suggested.

4.1. Dürer’s heptagon. As an example, let’s study the construction of Albrecht
Dürer (1525) for a regular heptagon [1]. A line segment corresponding to the side
of the heptagon in this construction is obtained by the GEOM program of Survo by
the following code:

____________________________________________________________________

O=point(0,0)

P1=point(0,1)

C1=circle(O,1)

C2=circle(P1,1,1.8,1.87)

A=cross_cc(C1,C2,1,0.5)

C3=circle(A,1,1.465,1.535)

B=cross_cc(C1,C3,1,-0.5)

P1B=line(P1,B)

Q=midpoint(P1,B)

E=edge(P1,Q)

____________________________________________________________________

In Fig. 7 the line segment P1Q (in green) is the required side and its length is
obtained from the results of GEOM in the following way:

____________________________________________________________________

Durer heptagon:

Loading the side length from the results of GEOM:

FILE LOAD -_Edges / VARS=E

0.8660254037844386

0.8660254037844386 (side length)

2*sin(pi/7)=0.8677674782351162 (length in regular heptagon)

An algebraic expression is obtained by INTREL command:

INTREL 0.8660254037844386

X=0.8660254037844386 is a root of 4*X^2-3=0
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____________________________________________________________________

Thus the exact side length in this approximation is a =
√

3/2 corresponding to

a central angle b = 2 arcsin(
√

3/4) ≈ 0.89566 radians or 51.3178 degrees and the
relative error when compared to the true value 360/7 degrees is about −0.002.

It should, however, to be observed that when there are 6 central angles of size
b, the remaining central angle is of size 2π − 6b ≈ 0.90919 radians or 52.0931
degrees and having a much larger relative error of about 0.013. When the splitting
technique is used for improvement there will be still more variation in central angles
and sides of the polygon.

Thus we must have a measure for the accuracy of the entire construction. Such an
overall measure can be based on the ratio of the areas A = area of the approximate
polygon and Aopt = area of the regular polygon. More precisely, since these areas
are quadratic entities, (and in the spirit of this study) it is reasonable to use the
square root of the proportional error

(5) M =
√

|1 − A/Aopt|

as an overall measure for the accuracy of an approximate construction.
The sucros NGON-IN and NGON-OUT are using a special for calculating and gath-

ering all pertinent information about iteration rounds and saves that in a text file
POLSECT.TXT. In Dürer’s construction the results of first 24 iteration rounds are

____________________________________________________________________

LOADP _POLSECT.TXT

Round Area M Growth of area Vertex

0 2.736379433014045 0.003352522277692

1 2.736397396679147 0.002162110715972 0.000017963665103 1

2 2.736401875586612 0.001742968891513 0.000004478907465 2

3 2.736406354494076 0.001183705354244 0.000004478907465 7

4 2.736407472714228 0.000996249685177 0.000001118220151 6

5 2.736408590934378 0.000764112887668 0.000001118220151 3

6 2.736408870678005 0.000694001695867 0.000000279743627 7

7 2.736409150421633 0.000615961202214 0.000000279743627 2

8 2.736409429787981 0.000526607942402 0.000000279366348 4

9 2.736409709343069 0.000418514843475 0.000000279555088 3

10 2.736409779255418 0.000386789019453 0.000000069912349 6

11 2.736409936478628 0.000303561749636 0.000000157223210 5

12 2.736410006390976 0.000258071322145 0.000000069912349 2

13 2.736410045706728 0.000228545769817 0.000000039315752 6

14 2.736410099235626 0.000180752444562 0.000000053528898 7

15 2.736410116710767 0.000162127390412 0.000000017475141 3

16 2.736410134182961 0.000141068112116 0.000000017472194 4

17 2.736410147563212 0.000122517356398 0.000000013380251 6

18 2.736410155822511 0.000109508928129 0.000000008259299 5

19 2.736410160191665 0.000101958481157 0.000000004369154 2

20 2.736410170021017 0.000082483155236 0.000000009829352 3

21 2.736410173366326 0.000074705778666 0.000000003345309 7

22 2.736410178895803 0.000059667819228 0.000000005529477 6

23 2.736410181353297 0.000051596283580 0.000000002457494 2

24 2.736410183418394 0.000043674969186 0.000000002065097 1
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____________________________________________________________________

This table shows how the area A grows towards Aopt = 7
2

sin(2π/7) ≈ 2.73641. The
original overall accuracy is about 0.003 and it improves to 0.001 in 3 first splits.
The last column indicates the index of the vertex that is moved in the current
round. The preceding column shows the growth of the area and naturally the three
first splits are most influential. Since the ’last’ side (from 7 to 1) is larger than
the others, at first vertex 1 is moved towards vertex 7. Then the side from 1 to 2
becomes larger than the side from 2 to 3 implying vertex 2 to move towards 1. At
the round 3 the sides from 1 to 7 and from 6 to 7 are equally imbalanced as the sides
in the previous round. The construction then proceeds symmetrically to vertices
6,3 then to 7,2 until the ’unpaired’ side 4,5 breaks the symmetry of improvements.

On all n values the vertex 1 is naturally moved at first. If n is even, this vertex
is moved never after this first round and the vertex n/2 + 1 (opposite to vertex 1)
keeps its original position in all rounds. If n = 4, the optimum result, a square, is
obtained on the round 3 irrespective of a biased original side length. In all other
cases the regularity is not achieved in finite steps when the original side length
deviates from the true one.

4.2. ”Stonehenge construction”. Nominally the best approximate heptagon con-
struction I have found in the literature is presented in paper [2] related to a study
of the famous prehistoric monument Stonehenge in England. The authors Anthony
Johnson and Alberto Pimpinelli tell their main intention on page 3 as follows:

”In this paper, we will focus on the Aubrey Hole circuit. We will argue that it was

laid down with the specific purpose of drawing a 56-sided polygon, and that a geometrical

construction based on the circle and square, readily doable with pegs and ropes, allows

one to trace the polygon to an extremely high accuracy. As a matter of fact, we will show

that the method discussed here provides the best known approximation to such a polygon,

as well as an exceedingly accurate regular heptagon.”

The construction of the side of the heptagon by this approach can be described
by the following GEOM code

____________________________________________________________________

O=point(0,0)

C1=circle(O,1)

A=point(0,1)

OA=line(O,A)

A3=cross_cl(C1,OA,0,-1)

LY0=perpendicular(OA,O)

A4=cross_cl(C1,LY0,1,0)

A4A=line(A4,A)

M=midpoint(A4,A)

OM=line(O,M)

F=cross_cl(C1,OM,0.7,0.7)

G=cross_cl(C1,OM,-0.7,0.7)

FF’=perpendicular(ly0,F)

B=cross(FF’,A4A)

F’=cross_cl(C1,FF’,0.7,-0.7)

GF’=line(G,F’)

C=cross(GF’,OA)
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BC=edge(B,C)

C2=circle(B,BC)

D1=cross_cc(C1,C2,0.3,-1)

D1D2=perpendicular(OA,D1)

D2=cross_cl(C1,D1D2)

E=edge(D1,D2)

____________________________________________________________________

illustrated in Fig. 8. There the line segment D1D2 is the side length given by this
construction and according to [2] (p.6) its length is

1

4
(
√

2 − 1 +

√

15 − 4
√

2) ≈ 0.8677173844.

The numerical value obtained from the GEOM construction confirms it:

____________________________________________________________________

"Stonehenge" heptagon:

Loading the side length from the results of GEOM:

FILE LOAD -_Edges / VARS=Edge,E

BC 1.2247448713915889

E 0.8677173843843491

0.8677173843843491 (side length)

2*sin(pi/7)=0.8677674782351162 (length in regular heptagon)

____________________________________________________________________

The MAT #POLSECT operation of Survo gives in this case following results for 12 first
splits:

____________________________________________________________________

LOADP _POLSECT.TXT

Round Area M Improvement Vertex
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0 2.736410163258900 0.000096304902693

1 2.736410178063983 0.000062162940385 0.000000014805083 1

2 2.736410181764966 0.000050117214140 0.000000003700984 7

3 2.736410185465950 0.000034047602855 0.000000003700984 2

4 2.736410186391160 0.000028655339791 0.000000000925210 6

5 2.736410187316370 0.000021977661975 0.000000000925210 3

6 2.736410187547677 0.000019962170283 0.000000000231307 2

7 2.736410187778984 0.000017718884246 0.000000000231307 7

8 2.736410188010282 0.000015147039516 0.000000000231298 5

9 2.736410188241584 0.000012037652924 0.000000000231302 6

10 2.736410188299411 0.000011125326100 0.000000000057826 7

11 2.736410188357237 0.000010131178844 0.000000000057826 3

____________________________________________________________________

The initial accuracy of the construction is about 0.001 and the three first splits
improves it to 0.0005.

For me, it is hard to believe that this elegant construction could have been
invented in those early times. In [2] no measurements are given about the accuracy
of the 56-sided polygon. I think that it is much simpler to assume that after the large
circle had been ’drawn’ by pegs and ropes, the vertices of heptagon were originally
placed by some crude guess of the side length, say a1. Then the difference of the
last side from the others corresponding to the central angle 2π − 6 · 2 arcsin(a1/2)
was divided into 7 equal parts and the side length was corrected according this
partition. This practical procedure can be described in a Survo edit field as follows:

____________________________________________________________________

Johnson and Pimpinelli (p.1):

"Averaging just over 1 m in width and 1 m deep the holes were found to

have been set on an accurate circle just over 87 m in diameter ---

running just inside the now much weathered and almost invisible 5,000

year-old chalk bank."

Assume that the accuracy of measurements is 1 cm.

radius 87/2=43.5 m

R=4350 cm

Correct side length would be a_opt=round(2*R*sin(pi/7)) a_opt=3775 cm

Let the original rope length be a1=3650 cm

Placing the pegs using this rope length, the length of

the last side d1 is obtained through these calculations:

Central angle b1=2*arcsin(a1/2/R) b1=0.8658775182941682

Last angle c1=2*pi-6*b1 c1=1.0879201974145776

Its side length d1=round(2*R*sin(c1/2)) d1=4502

The above calculations were not needed in practice.

d1=4502 was obtained by measuring length between

the last two pegs by another rope.
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The difference between rope lengths could then be observed as

error1=d1-a1 error1=852

Then a better side length a2 is obtained by extending the original

rope length by error1/7 by selecting a new rope length

a2=round(a1+error1/7) a2=3772 cm

Then the same procedure is repeated with a rope of length a2:

Central angle b2=2*arcsin(a2/2/R) b2=0.8968864596125069

Last angle c2=2*pi-6*b2 c2=0.901866549504545

Its side length d2=round(2*R*sin(c2/2)) d2=3792

a3=round(a2+(d2-a2)/7) a3=3775 cm (same as the optimal length)

The M values for a1,a2,a3 are

a1 0.0560

a2 0.0012

a3 0.0001

obtained, for example, for a3 by the sucro command

/APPR_NGON 7,2*arcsin(3775/4350/2),0

giving among other things M=0.000093453793399

____________________________________________________________________

By three rounds of placing the pegs on the circumference of the circle, the best
possible solution was found within the limits of accuracy in measurements. Accord-
ing to M value, the construction was not as good as that of Johnson and Pimpinelli
in theory but simpler and accurate enough in practice. It was also achieved with-
out any knowledge of plane geometry although it could have been performed as a
traditional ruler and compass construction.

If the above practical construction is iterated in a unit circle by making calcu-
lations in double precision, it converges to the to the side of a regular heptagon
2 sin(π/7) ≈ 0.8677674782351162. When starting from any reasonable approximate
side length, the above approximate value is obtained already after 5 or 6 iterations.

The current version of this paper can be downloaded from
http://www.survo.fi/papers/Polygons2013.pdf
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