double cdf_std(x)
double x;
returns the cumulative distribution function of the standardized normal
distribution with the accuracy of the machine.
double inv_std(p)
double p;
returns x = inv_F(p
) for a given value of p
(0 < p
< 1-1.0E-15), where
inv_F is the inverse distribution function of the standardized
normal distribution.
Accuracy:
0 < p <= 1-1E-4: the accuracy of the machine
1-1E-4 < p <= 1-1E-8: 13-10 significant digits
1-1E-8 < p <= 1-1E-11: 9-5 significant digits
1-1E-11 < p <= 1-1E-15: 4-2 significant digits
double pdf_t(x,n)
double x,n;
returns the Student's density function for a value x
with n
(n
> 0)
degrees of freedom with the accuracy of the machine.
double cdf_t(x,n)
double x,n;
returns the cumulative distribution function of the Student's
distribution for a value x
with n
(n
>0) degrees of freedom.
Accuracy: 10-14 significant digits for |x
| >= 1E-7 .
double inv_t(p,n)
double p,n;
returns x = inv_F(p
,n
) for a given value of p
(0 < p
<= 1-1E-15), where
inv_F is the inverse distribution function of the Student's distribution
for n
(n
> 0) degrees of freedom.
Accuracy:
0.5+1E-4 <= p < 1-1E-7: over 10 significant digits
1-1E-7 <= p < 1-1E-9: 10-9 significant digits
1-1E-9 <= p < 1-1E-12: 8-5 significant digits
1-1E-12 < p <= 1-1E-15: 4-2 significant digits
Similar accuracy for 0 < p < 0.5 .
double pdf_chi2(x,n)
double x,n;
returns the chi-square density function for a value x
with n
(n
> 0) degrees of freedom with the accuracy of the machine.
double cdf_chi2(x,n,rel_error)
double x,n,rel_error;
returns the cumulative distribution function of
the chi-square distribution
for a value x
with n
(n
> 0) degrees of freedom.
Accuracy: determined by rel_error
(1E-15 <= rel_error
< 0.5) .
double inv_chi2(p,n)
double p,n;
returns x = inv_F(p
,n
) for a given value of p
(1E-6 <= p
< 1-1E-6), where
inv_F is the inverse distribution function of
the chi-square distribution for n
(n
> 0) degrees of freedom.
Accuracy: over 10 significant digits.
double pdf_beta(x,a,b)
double x,a,b;
returns the Beta density function for a value x
and parameters a
,b
(a
,b
> 0) with the accuracy of the machine.
double cdf_beta(x,a,b,rel_error)
double x,a,b,rel_error;
returns the cumulative distribution function of the Beta distribution
for a value x
and parameters a
,b
(a
,b
> 0).
Accuracy: determined by rel_error
(1E-15 <= rel_error
< 0.5) .
double inv_beta(p,a,b,s_digits)
double p,a,b;
int s_digits;
returns x = inv_F(p
,a
,b
) for a given value of p
(0 < p
<= 1-1E-15), where
inv_F is the inverse distribution function of the Beta distribution with
parameters a
,b
.
Accuracy: The number of significant digits is determined by s_digits
(2 <= s_digits
<= 14).
double pdf_f(x,n1,n2)
double x,n1,n2;
returns the F density function for a value x
and n1
and n2
(n1
,n2
> 0)
degrees of freedom with the accuracy of the machine.
double cdf_f(x,n1,n2,rel_error)
double x,n1,n2,rel_error;
returns the cumulative distribution function of the F distribution
for a value x
and n1
and n2
(n1
,n2
> 0) degrees of freedom.
Accuracy: same as in t distribution if n1
= 1 or n2
= 1.
Otherwise determined by rel_error
(1E-15 <= rel_error
< 0.5) .
double inv_f(p,n1,n2,s_digits)
double p,n1,n2;
int s_digits
returns x = inv_F(p
,n1
,n2
) for a given value of p
(0 < p
< 1), where inv_F
is the inverse distribution function of the F distribution for n1
and n2
(n1
,n2
> 0) degrees of freedom.
Accuracy: same as in t distribution if n1
= 1 or n2
= 1.
Otherwise the number of significant digits is determined by s_digits
(2 <= s_digits
<= 4).
double lg_gamma(x)
double x;
returns the natural logarithm of the gamma function with the accuracy of
the machine.