INTREL <decimal_number>,L tries to find an exact numeric expression for which <decimal_number> is an (accurate) approximation. The PSLQ algorithm by Ferguson and Plouffe (1992) is used. The main approach is to see <decimal_number> as a root X of an algebraic equation of nth degree C0+C1*X+C2*X^2+...+Cn*X^n=0 with integer coefficients C0,C1,C2,...,Cn. The maximum degree n is set by a specification DEGREE=n (n=1,2,...,20). The accuracy of approximation is set by EPS, default EPS=1e-12 . L is the first line for the results (default is CUR+1). ....................................................................... Example: ACCURACY=16 sqrt(2)=1.4142135623731 DEGREE=2 INTREL 3.4142135623731 X=3.4142135623731 is a root of X^2-4*X+2=0 ....................................................................... By giving a specification CONSTANTS=<matrix_file> values of the first column, say X1,X2,..., are used instead of powers of X. Example on the next page: ....................................................................... Example: MATRIX C /// C 1 1 e 2.718281828459045 Pi 3.141592653589793 MAT SAVE C x=5+2*3.141592653589793-3*exp(1) x=3.128339821802451 ....................................................................... CONSTANTS=C INTREL 3.128339821802451 Integer relation for X=3.128339821802451: Constant Coefficient X 1 1 -5 e 3 Pi -2 ....................................................................... 1 = More about mathematical operations