PLOT INTEGRAL Y(X)=f(X) (X can be any 'word') plots the integral function of f(X). The range of integration and plotting is given in the form X=<lower limit>,<upper limit>,<step>. If the limits and the step (which is used both in integration and plotting) is not given, XSCALE determines them and 1/100 of the range is used as <step>. See also extra specification INTEGRAL which can be used for normalizing of the integral on the whole range. For example, PLOT INTEGRAL Y(X)=EXP(-0.5*(X/sigma)^2) INTEGRAL=1 XSCALE=-8(2)8 YSCALE=0(0.1)1 sigma=1,2,0.5 plots the cumulative distribution function of N(0,sigma^2) for sigma=1,1.5,2. Observe that INTEGRAL=1 normalizes the integral to 1 on the interval (-8,8) in this case and so the constant multiplier 1/(sqr(2*pi)*sigma) can be dropped from the normal density. C = More information on curve plotting