INTERP L1,L2,L3,L4,K where K is a label of a mask line of the form XXXXX XXXX YY.YYY XX YYY.YY interpolates columns denoted by Y masks by linear regression analysis using X columns as regressors. If there are no X columns or only one X column appears, the Y columns are interpolated by polynomial regres- sion. In this case the degree m of the polynomial is given by the specification DEGREE=m. Default is DEGREE=1. The source data with complete X and Y values is given on lines L1-L2. The interpolated (and extrapolated) Y values will be computed on lines L3-L4 using given X values on the same lines. In polynomial regression without X columns, L-L1+1 where L is the current line number, is the basic regressor. In this case it is typical that L3=L2+1. Examples on the next page! 57 *INTERP A,B,C,D,E 58 E XX XX YYY.Y YYY.YY 59 A 10 5 15.5 25 60 * 0 3 3.5 3 61 * 7 4 11.5 18 62 B 2 -5 -2.5 -1 63 C 7 4 11.5 18.00 64 * 3 3 6.5 9.00 65 D 11 3 14.5 25.00 66 *............................................................................................. 67 *INTERP CUR+2,CUR+4,CUR+5,CUR+7,CUR+1 / DEGREE=2 68 * YYY 69 * 1 70 * 4 71 * 9 72 * 16 73 * 25 74 * 36 T = More information on operations for tables